Word Alignment Based on Multi-Grain Model

Author(s):  
Yanqing He ◽  
Yu Zhou ◽  
Chengqing Zong
Keyword(s):  
2014 ◽  
Author(s):  
Yin-Wen Chang ◽  
Alexander M. Rush ◽  
John DeNero ◽  
Michael Collins
Keyword(s):  

2021 ◽  
Vol 11 (4) ◽  
pp. 1868
Author(s):  
Sari Dewi Budiwati ◽  
Al Hafiz Akbar Maulana Siagian ◽  
Tirana Noor Fatyanosa ◽  
Masayoshi Aritsugi

Phrase table combination in pivot approaches can be an effective method to deal with low-resource language pairs. The common practice to generate phrase tables in pivot approaches is to use standard symmetrization, i.e., grow-diag-final-and. Although some researchers found that the use of non-standard symmetrization could improve bilingual evaluation understudy (BLEU) scores, the use of non-standard symmetrization has not been commonly employed in pivot approaches. In this study, we propose a strategy that uses the non-standard symmetrization of word alignment in phrase table combination. The appropriate symmetrization is selected based on the highest BLEU scores in each direct translation of source–target, source–pivot, and pivot–target of Kazakh–English (Kk–En) and Japanese–Indonesian (Ja–Id). Our experiments show that our proposed strategy outperforms the direct translation in Kk–En with absolute improvements of 0.35 (a 11.3% relative improvement) and 0.22 (a 6.4% relative improvement) BLEU points for 3-gram and 5-gram, respectively. The proposed strategy shows an absolute gain of up to 0.11 (a 0.9% relative improvement) BLEU points compared to direct translation for 3-gram in Ja–Id. Our proposed strategy using a small phrase table obtains better BLEU scores than a strategy using a large phrase table. The size of the target monolingual and feature function weight of the language model (LM) could reduce perplexity scores.


Author(s):  
Peng Yin ◽  
Zhou Shu ◽  
Yingjun Xia ◽  
Tianmei Shen ◽  
Xiao Guan ◽  
...  
Keyword(s):  

Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 120389
Author(s):  
Haseen Siddiqui ◽  
Ankita Gupta ◽  
Sanjay M. Mahajani

2010 ◽  
Vol 36 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Sujith Ravi ◽  
Kevin Knight

Word alignment is a critical procedure within statistical machine translation (SMT). Brown et al. (1993) have provided the most popular word alignment algorithm to date, one that has been implemented in the GIZA (Al-Onaizan et al., 1999) and GIZA++ (Och and Ney 2003) software and adopted by nearly every SMT project. In this article, we investigate whether this algorithm makes search errors when it computes Viterbi alignments, that is, whether it returns alignments that are sub-optimal according to a trained model.


2014 ◽  
Vol 5 (12) ◽  
pp. 2144-2149 ◽  
Author(s):  
John K. Brennan ◽  
Martin Lísal ◽  
Joshua D. Moore ◽  
Sergei Izvekov ◽  
Igor V. Schweigert ◽  
...  

2018 ◽  
Vol 615 ◽  
pp. A20 ◽  
Author(s):  
Wasim Iqbal ◽  
Valentine Wakelam

Context. Species abundances in the interstellar medium (ISM) strongly depend on the chemistry occurring at the surfaces of the dust grains. To describe the complexity of the chemistry, various numerical models have been constructed. In most of these models, the grains are described by a single size of 0.1 μm. Aims. We study the impact on the abundances of many species observed in the cold cores by considering several grain sizes in the Nautilus multi-grain model. Methods. We used grain sizes with radii in the range of 0.005 μm to 0.25 μm. We sampled this range in many bins. We used the previously published, MRN and WD grain size distributions to calculate the number density of grains in each bin. Other parameters such as the grain surface temperature or the cosmic-ray-induced desorption rates also vary with grain sizes. Results. We present the abundances of various molecules in the gas phase and also on the dust surface at different time intervals during the simulation. We present a comparative study of results obtained using the single grain and the multi-grain models. We also compare our results with the observed abundances in TMC-1 and L134N clouds. Conclusions. We show that the grain size, the grain size dependent surface temperature and the peak surface temperature induced by cosmic ray collisions, play key roles in determining the ice and the gas phase abundances of various molecules. We also show that the differences between the MRN and the WD models are crucial for better fitting the observed abundances in different regions in the ISM. We show that the small grains play a very important role in the enrichment of the gas phase with the species which are mainly formed on the grain surface, as non-thermal desorption induced by collisions of cosmic ray particles is very efficient on the small grains.


2012 ◽  
Vol 44 (01) ◽  
pp. 1-20 ◽  
Author(s):  
B. Galerne ◽  
Y. Gousseau

In this paper we introduce the transparent dead leaves (TDL) random field, a new germ-grain model in which the grains are combined according to a transparency principle. Informally, this model may be seen as the superposition of infinitely many semitransparent objects. It is therefore of interest in view of the modeling of natural images. Properties of this new model are established and a simulation algorithm is proposed. The main contribution of the paper is to establish a central limit theorem, showing that, when varying the transparency of the grain from opacity to total transparency, the TDL model ranges from the dead leaves model to a Gaussian random field.


Sign in / Sign up

Export Citation Format

Share Document