scholarly journals Nautilus multi-grain model: Importance of cosmic-ray-induced desorption in determining the chemical abundances in the ISM

2018 ◽  
Vol 615 ◽  
pp. A20 ◽  
Author(s):  
Wasim Iqbal ◽  
Valentine Wakelam

Context. Species abundances in the interstellar medium (ISM) strongly depend on the chemistry occurring at the surfaces of the dust grains. To describe the complexity of the chemistry, various numerical models have been constructed. In most of these models, the grains are described by a single size of 0.1 μm. Aims. We study the impact on the abundances of many species observed in the cold cores by considering several grain sizes in the Nautilus multi-grain model. Methods. We used grain sizes with radii in the range of 0.005 μm to 0.25 μm. We sampled this range in many bins. We used the previously published, MRN and WD grain size distributions to calculate the number density of grains in each bin. Other parameters such as the grain surface temperature or the cosmic-ray-induced desorption rates also vary with grain sizes. Results. We present the abundances of various molecules in the gas phase and also on the dust surface at different time intervals during the simulation. We present a comparative study of results obtained using the single grain and the multi-grain models. We also compare our results with the observed abundances in TMC-1 and L134N clouds. Conclusions. We show that the grain size, the grain size dependent surface temperature and the peak surface temperature induced by cosmic ray collisions, play key roles in determining the ice and the gas phase abundances of various molecules. We also show that the differences between the MRN and the WD models are crucial for better fitting the observed abundances in different regions in the ISM. We show that the small grains play a very important role in the enrichment of the gas phase with the species which are mainly formed on the grain surface, as non-thermal desorption induced by collisions of cosmic ray particles is very efficient on the small grains.

2021 ◽  
Vol 507 (4) ◽  
pp. 6205-6214
Author(s):  
Kedron Silsbee ◽  
Paola Caselli ◽  
Alexei V Ivlev

ABSTRACT We compute the desorption rate of icy mantles on dust grains as a function of the size and composition of both the grain and the mantle. We combine existing models of cosmic ray (CR)-related desorption phenomena with a model of CR transport to accurately calculate the desorption rates in dark regions of molecular clouds. We show that different desorption mechanisms dominate for grains of different sizes and in different regions of the cloud. We then use these calculations to investigate a simple model of the growth of mantles, given a distribution of grain sizes. We find that modest variations of the desorption rate with grain size lead to a strong dependence of mantle thickness on grain size. Furthermore, we show that freeze-out is almost complete in the absence of an external ultraviolet (UV) field, even when photodesorption from CR-produced UV is taken into consideration. Even at gas densities of $10^4\, {\rm cm^{-3}}$, less than 30 per cent of the CO remain in the gas phase after 3 × 105 yr for standard values of the CR ionization rate.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Gianguido Baldinozzi ◽  
David Simeone ◽  
Dominique Gosset ◽  
Mickael Dollé ◽  
Georgette Petot-Ervas

AbstractWe have synthesized Gd-doped ceria polycrystalline samples (5, 10, 15 %mol), having relative densities exceeding 95% and grain sizes between 30 and 160 nm after axial hot pressing (750 °C, 250 MPa). The samples were prepared by sintering nanopowders obtained by sol-gel chemistry methods having a very narrow size distribution centered at about 16 nm. SEM and X-ray diffraction were performed to characterize the sample microstructures and to assess their structures. We report ionic conductivity measurements using impedance spectroscopy. It is important to investigate the properties of these systems with sub-micrometric grains and as a function of their composition. Therefore, samples having micrometric and nanometric grain sizes (and different Gd content) were studied. Evidence of Gd segregation near the grain boundaries is given and the impact on the ionic conductivity, as a function of the grain size and Gd composition, is discussed and compared to microcrystalline samples.


Amylase ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Wei Ping Quek ◽  
Wenwen Yu ◽  
Glen P. Fox ◽  
Robert G. Gilbert

Abstract In brewing, amylases are key enzymes in hydrolyzing barley starch to sugars, which are utilized in fermentation to produce ethanol. Starch fermentation depends on sugars produced by amylases and starch molecular structure, both of which vary with barley grain size. Grain size is a major industrial specification for selecting barley for brewing. An in-depth study is given of how enzyme activity and starch structure vary with grain size, the impact of these factors on fermentable sugar production, and the underlying mechanisms. Micro-malting and mashing experiments were based on commercial methodologies. Starch molecular structural parameters were obtained using size-exclusion chromatography, and fitted using biosynthesis-based models. Correlation analysis using the resulting parameters showed larger grain sizes contained fewer long amylopectin chains, higher amylase activities and soluble protein level. Medium grain sizes released most sugars during mashing, because of higher starch utilization from the action of amylases, and shorter amylose chains. As starch is the substrate for amylase-driven fermentable sugars production, measuring its structure should be a prime indication for mashing performance, and should be used as an industry specification when selecting barley grains for brewing.


2011 ◽  
Vol 702-703 ◽  
pp. 766-769 ◽  
Author(s):  
A. Ray ◽  
Debalay Chakrabarti

Charpy impact testing (over the transition temperature rage) on different samples of a Ti-microalloyed steel, having the same average-TiN particle size but different average-ferrite grain sizes, showed that in spite of the presence of large TiN cuboides, ferrite grain refinement can significantly improve the impact toughness, provided the meso-texture (i.e. the intensity of low-angle boundaries) and matrix strength can be restricted to low values.


2020 ◽  
Vol 495 (2) ◽  
pp. 1650-1665 ◽  
Author(s):  
M Van de Sande ◽  
C Walsh ◽  
T Danilovich

ABSTRACT Asymptotic giant branch (AGB) stars are, together with supernovae, the main contributors of stellar dust to the interstellar medium (ISM). Dust grains formed by AGB stars are thought to be large. However, as dust nucleation and growth within their outflows are still not understood, the dust-grain size distribution (GSD) is unknown. This is an important uncertainty regarding our knowledge of the chemical and physical history of interstellar dust, as AGB dust forms ${\sim} 70{{\ \rm per\ cent}}$ of the starting point of its evolution. We expand on our chemical kinetics model, which uniquely includes a comprehensive dust–gas chemistry. The GSD is now allowed to deviate from the commonly assumed canonical Mathis, Rumpl & Nordsieck distribution. We find that the specific GSD can significantly influence the dust–gas chemistry within the outflow. Our results show that the level of depletion of gas-phase species depends on the average grain surface area of the GSD. Gas-phase abundance profiles and their possible depletions can be retrieved from observations of molecular emission lines when using a range of transitions. Because of degeneracies within the prescription of GSD, specific parameters cannot be retrieved, only (a lower limit to) the average grain surface area. None the less, this can discriminate between dust composed of predominantly large or small grains. We show that when combined with other observables such as the spectral energy distribution and polarized light, depletion levels from molecular gas-phase abundance profiles can constrain the elusive GSD of the dust delivered to the ISM by AGB outflows.


2008 ◽  
Vol 5 (2) ◽  
pp. 213-253 ◽  
Author(s):  
J. Brown ◽  
C. A. Clayson ◽  
L. Kantha ◽  
T. Rojsiraphisal

Abstract. The circulation in the North Indian Ocean (NIO henceforth) is highly seasonally variable. Periodically reversing monsoon winds (southwesterly during summer and northeasterly during winter) give rise to seasonally reversing current systems off the coast of Somalia and India. In addition to this annual monsoon cycle, the NIO circulation varies semiannually because of equatorial currents reversing four times each year. These descriptions are typical, but how does the NIO circulation behave during anomalous years, during an Indian Ocean dipole (IOD) for instance? Unfortunately, in situ observational data are rather sparse and reliance has to be placed on numerical models to understand this variability. In this paper, we estimate the surface current variability from a 12-year hindcast of the NIO for 1993–2004 using a 1/2° resolution circulation model that assimilates both altimetric sea surface height anomalies and sea surface temperature. Presented in this paper is an examination of surface currents in the NIO basin during the IOD. During the non-IOD period of 2000–2004, the typical equatorial circulation of the NIO reverses four times each year and transports water across the basin preventing a large sea surface temperature difference between the western and eastern NIO. Conversely, IOD years are noted for strong easterly and westerly wind outbursts along the equator. The impact of these outbursts on the NIO circulation is to reverse the direction of the currents – when compared to non-IOD years – during the summer for negative IOD events (1996 and 1998) and during the fall for positive IOD events (1994 and 1997). This reversal of current direction leads to large temperature differences between the western and eastern NIO.


2020 ◽  
Vol 642 ◽  
pp. A198
Author(s):  
J. Brisset ◽  
C. Cox ◽  
S. Anderson ◽  
J. Hatchitt ◽  
A. Madison ◽  
...  

Context. In situ observations of small asteroids, such as Itokawa, Ryugu, and Bennu, show that surfaces covered by boulders and coarse terrain are frequent on such bodies. Regolith grain sizes have distributions on approximately mm and cm scales, and the behavior of such large grains in the very low-gravity environments of small body surfaces dictates their morphology and evolution. Aims. In order to support the understanding of natural processes (e.g., the recapturing of impact ejecta) or spacecraft-induced interactions (e.g., the fate of a small lander), we aim to experimentally investigate the response of coarse-grained target surfaces to very-low-speed impacts (below 2 m s−1). Methods. We present the outcome of 86 low-speed impacts of a cm-sized spherical projectile into a bed of simulated regolith, composed of irregular mm- and cm-sized grains. These impacts were performed under vacuum and microgravity conditions. Our results include measurements for the projectile coefficient of restitution and penetration depth, as well as ejecta production, speed, and mass estimation. As part of our data analysis, we compared our data set with impacts performed in similar conditions with fine grain regolith targets to determine the dependence of our measurements on the target grain size. Results. We find that impact outcomes include the frequent occurrence of projectile bouncing and tangential rolling on the target surface upon impact. Ejecta is produced for impact speeds higher than about 12 cm s−1, and ejecta speeds scale with the projectile to target the grain size ratio and the impact speed. Ejected mass estimations indicate that ejecta is increasingly difficult to produce for increasing grain sizes. Coefficients of restitution of rebounding projectiles do not display a dependency on the target grain size, unlike their maximum penetration depth, which can be scaled with the projectile to target grain size ratio. Finally, we compare our experimental measurements to spacecraft data and numerical work on Hayabusa 2’s MASCOT landing on the surface of the asteroid Ryugu.


2020 ◽  
Vol 641 ◽  
pp. A49
Author(s):  
Juris Kalvāns ◽  
Juris Roberts Kalnin

Context. Evaporative (sublimation) cooling of icy interstellar grains occurs when the grains have been suddenly heated by a cosmic-ray (CR) particle or other process. It results in thermal desorption of icy species, affecting the chemical composition of interstellar clouds. Aims. We investigate details on sublimation cooling, obtaining necessary knowledge before this process is considered in astrochemical models. Methods. We employed a numerical code that describes the sublimation of molecules from an icy grain, layer by layer, also considering a limited diffusion of bulk-ice molecules toward the surface before they sublimate. We studied a grain, suddenly heated to peak temperature T, which cools via sublimation and radiation. Results. A number of questions were answered. The choice of grain heat capacity C has a limited effect on the number of sublimated molecules N, if the grain temperature T > 40 K. For grains with different sizes, CR-induced desorption is most efficient for rather small grains with a core radius of a ≈ 0.02 μm. CR-induced sublimation of CO2 ice can occur only from small grains if their peak temperature is T > 80 K and there is a lack of other volatiles. The presence of H2 molecules on grain surface hastens their cooling and thus significantly reduces N for other sublimated molecules for T ≤ 30 K. Finally, if there is no diffusion and subsequent sublimation of bulk-ice molecules (i.e., sublimation occurs only from the surface layer), sublimation yields do not exceed 1–2 monolayers and, if T > 50 K, N does not increase with increasing T. Conclusions. Important details regarding the sublimation cooling of icy interstellar grains were clarified, which will enable a proper consideration of this process in astrochemical modeling.


2020 ◽  
Vol 637 ◽  
pp. A39
Author(s):  
D. Navarro-Almaida ◽  
R. Le Gal ◽  
A. Fuente ◽  
P. Rivière-Marichalar ◽  
V. Wakelam ◽  
...  

Context. Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. Aims. Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Methods. Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model NAUTILUS is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. Results. Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when nH > 2 × 104. This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5−10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. Conclusions. The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


Sign in / Sign up

Export Citation Format

Share Document