Non-invasive identification of the total peripheral resistance baroreflex impulse response from spontaneous hemodynamic variability

Author(s):  
Y. Li ◽  
R.I. Elahi ◽  
R. Mukkamala
2008 ◽  
Vol 294 (1) ◽  
pp. H293-H301 ◽  
Author(s):  
Xiaoxiao Chen ◽  
Jong-Kyung Kim ◽  
Javier A. Sala-Mercado ◽  
Robert L. Hammond ◽  
Rafat I. Elahi ◽  
...  

We previously developed a mathematical analysis technique for estimating the static gain values of the arterial total peripheral resistance (TPR) baroreflex ( GA) and the cardiopulmonary TPR baroreflex ( GC) from small, spontaneous beat-to-beat fluctuations in arterial blood pressure, cardiac output, and stroke volume. Here, we extended the mathematical analysis so as to also estimate the entire arterial TPR baroreflex impulse response [ hA( t)] as well as the lumped arterial compliance (AC). The extended technique may therefore provide a linear dynamic characterization of TPR baroreflex systems during normal physiological conditions from potentially noninvasive measurements. We theoretically evaluated the technique with respect to realistic spontaneous hemodynamic variability generated by a cardiovascular simulator with known system properties. Our results showed that the technique reliably estimated hA( t) [error = 30.2 ± 2.6% for the square root of energy ( EA), 19.7 ± 1.6% for absolute peak amplitude ( PA), 37.3 ± 2.5% for GA, and 33.1 ± 4.9% for the overall time constant] and AC (error = 17.6 ± 4.2%) under various simulator parameter values and reliably tracked changes in GC. We also experimentally evaluated the technique with respect to spontaneous hemodynamic variability measured from seven conscious dogs before and after chronic arterial baroreceptor denervation. Our results showed that the technique correctly predicted the abolishment of hA( t) [ EA = 1.0 ± 0.2 to 0.3 ± 0.1, PA = 0.3 ± 0.1 to 0.1 ± 0.0 s−1, and GA = −2.1 ± 0.6 to 0.3 ± 0.2 ( P < 0.05)] and the enhancement of GC [−0.7 ± 0.44 to −1.8 ± 0.2 ( P < 0.05)] following the chronic intervention. Moreover, the technique yielded estimates whose values were consistent with those reported with more invasive and/or experimentally difficult methods.


Author(s):  
L. Yu. Orekhova ◽  
A. A. Petrov ◽  
E. S. Loboda ◽  
I. V. Berezkina ◽  
K. V. Shadrina

Relevance. The study of age-related features of microcirculation in periodontal tissues, using non-invasive functional research methods, allows us to develop the optimal range of therapeutic measures, as well as form a “personalized therapeutic case”.Purpose. Study of the functional state of the microvasculature in the tissues of the parodont in individuals of various age groups.Materials and methods. A standard dental examination of 80 patients was carried out, the sample of participants was ranked in 4 groups by age: 1 group – 12 years old, 2 group – 15 years old, 3 group – from 16 to 18 years old, 4 group – from 22 to 24 years old. Hygiene and periodontal indices were determined for all patients, such as papillarymarginal-alveolar (PMA) in the Parma modification, the Mulleman bleeding index in the Cowell modification (SBI), and the simplified Green Vermillion index of oral hygiene (OHI–s), caries intensity indicators for a permanent bite (CPI), as well as ultrasound dopplerography of periodontal tissues using the apparatus "Minimax-Doppler-K".Results. When studying microcirculation in periodontal tissues, distinctive characteristics of linear (Vas) and volumetric (Qas) blood flow rates, as well as indicators of pulsation indices (PI) and peripheral resistance (RI) in people of different age groups were recorded.Conclusions. This study confirms the presence of various hemodynamic indicators of periodontal tissues in the studied groups, which is due to structural features of the circulatory system in age periods.


1963 ◽  
Vol 204 (1) ◽  
pp. 71-72 ◽  
Author(s):  
Edward D. Freis ◽  
Jay N. Cohn ◽  
Thomas E. Liptak ◽  
Aristide G. B. Kovach

The mechanism of the diastolic pressure elevation occurring during left stellate ganglion stimulation was investigated. The cardiac output rose considerably, the heart rate remained essentially unchanged, and the total peripheral resistance fell moderately. The diastolic rise appeared to be due to increased blood flow rather than to any active changes in resistance vessels.


Hypertension ◽  
2018 ◽  
Vol 72 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Chloe Park ◽  
Abigail Fraser ◽  
Laura D. Howe ◽  
Siana Jones ◽  
George Davey Smith ◽  
...  

1996 ◽  
Vol 271 (2) ◽  
pp. H602-H613 ◽  
Author(s):  
M. P. Kunert ◽  
J. F. Liard ◽  
D. J. Abraham

Tissue O2 delivery in excess of metabolic demand may be a factor in the development of high vascular resistance in experimental models of volume-expanded hypertension. This hypothesis was previously tested in rats with an exchange transfusion of red blood cells treated with inositol hexaphosphate or an intravenous infusion of RSR-4, allosteric effectors of hemoglobin. The binding of these drugs with hemoglobin effect a conformational change in the molecule, such that the affinity for O2 is reduced. However, in both preparations, the changes in vascular resistance could have been nonspecific. The present studies used intravenous infusions of RSR-13, which did not share some of the problematic characteristics of RSR-4 and inositol hexaphosphate. Conscious instrumented rats (an electromagnetic flow probe on ascending aorta or an iliac, mesenteric, or renal Doppler flow probe) were studied for 6 h after an RSR-13 infusion of 200 mg/kg in 15 min. This dose significantly increased arterial P50 (PO2 at which hemoglobin is 50% saturated) from 38 +/- 0.8 to 58 +/- 1.4 mmHg at 1 h after the start of the infusion. In the 3rd h cardiac output fell significantly from a control value of 358 +/- 33 to 243 +/- 24 ml.kg-1.min-1 and total peripheral resistance significantly increased from 0.31 +/- 0.03 to 0.43 +/- 0.04 mmHg.ml-1.kg.min. Cardiac output and P50 returned toward control over the next few hours. Neither cardiac output nor total peripheral resistance changed in the group of rats receiving vehicle alone. In a separate group of rats, iliac flow decreased significantly to 60% of control and iliac resistance increased to 160% of control. Iliac flow increased significantly in the group of rats that received vehicle only. Although the mechanism of these changes has not been established, these results suggest that a decreased O2 affinity leads to an increased total peripheral resistance and regional vascular resistance and support the hypothesis that O2 plays a role in the metabolic autoregulation of blood flow.


1988 ◽  
Vol 254 (4) ◽  
pp. H811-H815 ◽  
Author(s):  
D. G. Parkes ◽  
J. P. Coghlan ◽  
J. G. McDougall ◽  
B. A. Scoggins

The hemodynamic and metabolic effects of long-term (5 day) infusion of human atrial natriuretic factor (ANF) were examined in conscious chronically instrumented sheep. Infusion of ANF at 20 micrograms/h, a rate below the threshold for an acute natriuretic effect, decreased blood pressure by 9 +/- 1 mmHg on day 5, associated with a fall in calculated total peripheral resistance. On day 1, ANF reduced cardiac output, stroke volume, and blood volume, effects that were associated with an increase in heart rate and calculated total peripheral resistance and a small decrease in blood pressure. On days 4 and 5 there was a small increase in urine volume and sodium excretion. On day 5 an increase in water intake and body weight was observed. No change was seen in plasma concentrations of renin, arginine vasopressin, glucose, adrenocorticotropic hormone, or protein. This study suggests that the short-term hypotensive effect of ANF results from a reduction in cardiac output associated with a fall in both stroke volume and effective blood volume. However, after 5 days of infusion, ANF lowers blood pressure via a reduction in total peripheral resistance.


Sign in / Sign up

Export Citation Format

Share Document