A software package for non-invasive, real-time beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic functionAn updated and improved software version for Windows 95/NT and the complete biosignal electronics (ECG, ICG, beat-to-beat and oscillometric blood pressure and pulse oxymetry) will be supplied in a compact instrument by: CNSystems Medical Equipment Inc. Heinrichstrasse 22 A-8010 Graz, Austria, Europe. Tel: +43/316/3631-0; Fax: +43/316/3631-20; E-mail: [email protected]; Internet: http.//www.cnsytems.at

1998 ◽  
Vol 28 (2) ◽  
pp. 121-142 ◽  
Author(s):  
Gerfried Gratze ◽  
Jürgen Fortin ◽  
Albert Holler ◽  
Karin Grasenick ◽  
Gert Pfurtscheller ◽  
...  
1988 ◽  
Vol 254 (4) ◽  
pp. H811-H815 ◽  
Author(s):  
D. G. Parkes ◽  
J. P. Coghlan ◽  
J. G. McDougall ◽  
B. A. Scoggins

The hemodynamic and metabolic effects of long-term (5 day) infusion of human atrial natriuretic factor (ANF) were examined in conscious chronically instrumented sheep. Infusion of ANF at 20 micrograms/h, a rate below the threshold for an acute natriuretic effect, decreased blood pressure by 9 +/- 1 mmHg on day 5, associated with a fall in calculated total peripheral resistance. On day 1, ANF reduced cardiac output, stroke volume, and blood volume, effects that were associated with an increase in heart rate and calculated total peripheral resistance and a small decrease in blood pressure. On days 4 and 5 there was a small increase in urine volume and sodium excretion. On day 5 an increase in water intake and body weight was observed. No change was seen in plasma concentrations of renin, arginine vasopressin, glucose, adrenocorticotropic hormone, or protein. This study suggests that the short-term hypotensive effect of ANF results from a reduction in cardiac output associated with a fall in both stroke volume and effective blood volume. However, after 5 days of infusion, ANF lowers blood pressure via a reduction in total peripheral resistance.


1989 ◽  
Vol 256 (3) ◽  
pp. R778-R785 ◽  
Author(s):  
M. I. Talan ◽  
B. T. Engel

Heart rate, stroke volume, and intra-arterial blood pressure were monitored continuously in each of four monkeys, 18 consecutive h/day for several weeks. The mean heart rate, stroke volume, cardiac output, systolic and diastolic blood pressure, and total peripheral resistance were calculated for each minute and reduced to hourly means. After base-line data were collected for approximately 20 days, observation was continued for equal periods of time under conditions of alpha-sympathetic blockade, beta-sympathetic blockade, and double sympathetic blockade. This was achieved by intra-arterial infusion of prazosin, atenolol, or a combination of both in concentration sufficient for at least 75% reduction of response to injection of agonists. The results confirmed previous findings of a diurnal pattern characterized by a fall in cardiac output and a rise in total peripheral resistance throughout the night. This pattern was not eliminated by selective blockade, of alpha- or beta-sympathetic receptors or by double sympathetic blockade; in fact, it was exacerbated by sympathetic blockade, indicating that the sympathetic nervous system attenuates these events. Because these findings indicate that blood volume redistribution is probably not the mechanism mediating the observed effects, we have hypothesized that a diurnal loss in plasma volume may mediate the fall in cardiac output and that the rise in total peripheral resistance reflects a homeostatic regulation of arterial pressure.


2019 ◽  
Vol 33 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Stefan Duschek ◽  
Alexandra Hoffmann ◽  
Casandra I. Montoro ◽  
Gustavo A. Reyes del Paso

Abstract. Chronic low blood pressure (hypotension) is accompanied by symptoms such as fatigue, reduced drive, faintness, dizziness, cold limbs, and concentration difficulties. The study explored the involvement of aberrances in autonomic cardiovascular control in the origin of this condition. In 40 hypotensive and 40 normotensive subjects, impedance cardiography, electrocardiography, and continuous blood pressure recordings were performed at rest and during stress induced by mental calculation. Parameters of cardiac sympathetic control (i.e., stroke volume, cardiac output, pre-ejection period, total peripheral resistance), parasympathetic control (i.e., heart rate variability), and baroreflex function (i.e., baroreflex sensitivity) were obtained. The hypotensive group exhibited markedly lower stroke volume, heart rate, and cardiac output, as well as higher pre-ejection period and baroreflex sensitivity than the control group. Hypotension was furthermore associated with a smaller blood pressure response during stress. No group differences arose in total peripheral resistance and heart rate variability. While reduced beta-adrenergic myocardial drive seems to constitute the principal feature of the autonomic impairment that characterizes chronic hypotension, baroreflex-related mechanisms may also contribute to this state. Insufficient organ perfusion due to reduced cardiac output and deficient cardiovascular adjustment to situational requirements may be involved in the manifestation of bodily and mental symptoms.


1981 ◽  
Vol 61 (s7) ◽  
pp. 117s-119s ◽  
Author(s):  
G. I. Russell ◽  
J. M. Brice ◽  
R. F. Bing ◽  
J. D. Swales ◽  
H. Thurston

1. Within 24 h of surgical reversal of chronic Goldblatt two-kidney, one-clip hypertension in the rat, of >4 months duration, blood pressure had fallen to normal levels. At this time there was no difference between the effects of removal of the clip or the ischaemic kidney but, at 60 days after reversal, the blood pressure of rats which had been nephrectomized was significantly higher than that of normal controls. 2. The fall in blood pressure was associated with a fall in total peripheral resistance to normal by 24 h despite the previous established fact that structural vascular changes take much longer to reverse. There was a corresponding rise in cardiac output, mainly due to an increase in stroke volume. Nephrectomized rats had a significantly higher stroke volume compared with those unclipped 24 h after operation. 3. As blood pressure can become normal in the presence of structural cardiovascular change by a fall in total peripheral resistance it would seem unlikely that resistance vessel hypertrophy is responsible for the maintenance of blood pressure in this model. Another peripherally acting mechanism therefore has to be postulated.


Hypertension ◽  
2018 ◽  
Vol 72 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Chloe Park ◽  
Abigail Fraser ◽  
Laura D. Howe ◽  
Siana Jones ◽  
George Davey Smith ◽  
...  

2011 ◽  
Vol 110 (3) ◽  
pp. 670-680 ◽  
Author(s):  
Nan Liang ◽  
Tomoko Nakamoto ◽  
Seina Mochizuki ◽  
Kanji Matsukawa

To examine whether central command contributes differently to the cardiovascular responses during voluntary static exercise engaged by different muscle groups, we encouraged healthy subjects to perform voluntary and electrically evoked involuntary static exercise of ankle dorsal and plantar flexion. Each exercise was conducted with 25% of the maximum voluntary force of the right ankle dorsal and plantar flexion, respectively, for 2 min. Heart rate (HR) and mean arterial blood pressure (MAP) were recorded, and stroke volume, cardiac output (CO), and total peripheral resistance were calculated. With voluntary exercise, HR, MAP, and CO significantly increased during dorsal flexion (the maximum increase, HR: 12 ± 2.3 beats/min; MAP: 14 ± 2.0 mmHg; CO: 1 ± 0.2 l/min), whereas only MAP increased during plantar flexion (the maximum increase, 6 ± 2.0 mmHg). Stroke volume and total peripheral resistance were unchanged throughout the two kinds of voluntary static exercise. With involuntary exercise, there were no significant changes in all cardiovascular variables, irrespective of dorsal or plantar flexion. Furthermore, before the force onset of voluntary static exercise, HR and MAP started to increase without muscle contraction, whereas they had no significant changes with involuntary exercise at the moment. The present findings indicate that differential contribution of central command is responsible for the different cardiovascular responses to static exercise, depending on the strength of central control of the contracting muscle.


Author(s):  
Moha’med O. Al-Jaafreh ◽  
Adel A. Al-Jumaily

The mean arterial pressure (MAP) is a very important cardiovascular parameter for physicians to diagnose various cardiovascular diseases. Many algorithms were used to estimate MAP with different accuracy. These algorithms used different factors, such as blood level, pulses, and external applied pressure, photo-plethysmography (PPG) signal features, heart rate (HR), and other factors. In addition, some natural-based techniques were employed to minimize the difference between estimated and measured blood pressure, as well as to measure blood pressure continuously. This article presents an algorithm to estimate MAP, utilizing the HR, Stroke Volume (SV), and Total Peripheral Resistance (TPR), with considering SV changing influence; this consideration is investigated mathematically, and by the Particle Swarm Optimization (PSO) technique.


1991 ◽  
Vol 260 (1) ◽  
pp. H254-H259
Author(s):  
R. Maass-Moreno ◽  
C. F. Rothe

We tested the hypothesis that the blood volumes of the spleen and liver of cats are reflexly controlled by the carotid sinus (CS) baroreceptors. In pentobarbital-anesthetized cats the CS area was isolated and perfused so that intracarotid pressure (Pcs) could be controlled while maintaining a normal brain blood perfusion. The volume changes of the liver and spleen were estimated by measuring their thickness using ultrasonic techniques. Cardiac output, systemic arterial blood pressure (Psa), central venous pressure, central blood volume, total peripheral resistance, and heart rate were also measured. In vagotomized cats, increasing Pcs by 100 mmHg caused a significant reduction in Psa (-67.8%), cardiac output (-26.6%), total peripheral resistance (-49.5%), and heart rate (-15%) and significantly increased spleen volume (9.7%, corresponding to a 2.1 +/- 0.5 mm increase in thickness). The liver volume decreased, but only by 1.6% (0.6 +/- 0.2 mm decrease in thickness), a change opposite that observed in the spleen. The changes in cardiovascular variables and in spleen volume suggest that the animals had functioning reflexes. These results indicate that in pentobarbital-anesthetized cats the carotid baroreceptors affect the volume of the spleen but not the liver and suggest that, although the spleen has an active role in the control of arterial blood pressure in the cat, the liver does not.


Sign in / Sign up

Export Citation Format

Share Document