inositol hexaphosphate
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 21)

H-INDEX

40
(FIVE YEARS 3)

2021 ◽  
Vol 11 (8) ◽  
pp. 756
Author(s):  
Maria Ida Amabile ◽  
Alessandro De Luca ◽  
Domenico Tripodi ◽  
Elena D’Alberti ◽  
Rossella Melcarne ◽  
...  

Background: Treatment of breast cancer (BC) includes locoregional and systemic therapies depending on tumor and patient’s characteristics. Inositol hexaphosphate (IP6) is known as a strong antioxidant agent, able to improve local (i.e., breast region) side effects, functional status and quality-of-life. We investigated some potential beneficial effects, including hematological and local, of the combined therapy with oral myo-inositol administration and topical IP6 application in patients undergoing surgery for BC and eligible to adjuvant chemotherapy. Methods: We considered BC patients randomly assigned to the Inositol Group (oral myo-inositol + IP6 local application for the entire neoadjuvant treatment period) and to the Control Group (standard of care). The EORTC QLQ-BR23 and QLQ-C30 questionnaires were administered to both groups and blood parameters were assessed as per clinical routine practice at baseline (before starting adjuvant chemotherapy), T1 (after the first two doses of epirubicin-cyclophosphamide regimen), T2 (at the end of epirubicin-cyclophosphamide regimen), T3 (after the first six doses of paclitaxel regimen), and T4 (at the end of the paclitaxel treatment). Results: A total of 36 BC patients were considered, 18 in the Inositol Group and 18 in the Control Group. The Inositol Group showed a lower decrease in red blood cells, hemoglobin levels and white blood cells with respect to controls (p ≤ 0.02), as well as amelioration in scores related to breast and arm local symptoms (p ≤ 0.02), body image (p = 0.04) and quality-of-life related symptoms (p ≤ 0.04). Conclusions: In our cohort of BC patients, a combined treatment with oral myo-inositol + IP6 local application was able to improve local symptoms and quality-of-life related symptoms which represent clinically relevant aspects associated with patient’s prognosis.


2021 ◽  
Author(s):  
Sunbin Deng ◽  
Leah Gottlieb ◽  
Buyan Pan ◽  
Julianna Supplee ◽  
Xuepeng Wei ◽  
...  

AbstractProtein N-terminal acetylation is predominantly a ribosome-associated modification, with NatA-E serving as the major enzymes. NatC is the most unusual of these enzymes, containing one Naa30 catalytic subunit and two auxiliary subunits, Naa35 and Naa38; and substrate specificity profile that overlaps with NatE. Here, we report the Cryo-EM structure of S. pombe NatC with a NatE/C-type bisubstrate analogue and inositol hexaphosphate (IP6), and associated biochemistry studies. We find that the presence of three subunits is a prerequisite for normal NatC acetylation activity in yeast and that IP6 binds tightly to NatC to stabilize the complex. We also describe the molecular basis for IP6-mediated NatC complex stabilization and the overlapping yet distinct substrate profiles of NatC and NatE.


2021 ◽  
Vol 12 (20) ◽  
pp. 6071-6080
Author(s):  
Xia Liao ◽  
Yaoyao Zhang ◽  
Binghui Xu ◽  
Arshad Ali ◽  
Xin Liu ◽  
...  

2021 ◽  
Author(s):  
Sandeep Kaur ◽  
Subhamay Pramanik ◽  
Victor W. Day ◽  
Kristin Bowman-James

The first crystal structures of highly phosphorylated biomolecules, scyllo-inositol hexaphosphates, reveal important internal and interactive external roles with salt-water surroundings.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5931
Author(s):  
Ivana Vucenik ◽  
Ana Druzijanic ◽  
Nikica Druzijanic

Multiple human health-beneficial effects have been related to highly phosphorylated inositol hexaphosphate (IP6). This naturally occurring carbohydrate and its parent compound, myo-inositol (Ins), are abundantly present in plants, particularly in certain high-fiber diets, but also in mammalian cells, where they regulate important cellular functions. However, the striking and broad-spectrum anticancer activity of IP6, consistently demonstrated in different experimental models, has been in a spotlight of the scientific community dealing with the nutrition and cancer during the last several decades. First experiments were performed in colon cancer 30 years ago. Since then, it has been shown that IP6 reduces cell proliferation, induces apoptosis and differentiation of malignant cells with reversion to normal phenotype, affecting several critical molecular targets. Enhanced immunity and antioxidant properties also contribute to the tumor cell destruction. Although Ins possesses a modest anticancer potential, the best anticancer results were obtained from the combination of IP6 + Ins. Here we review the first experimental steps in colon cancer, when concepts and hypotheses were put together almost without real knowledge and present clinical studies, that were initiated in colon cancer patients. Available as a dietary supplement, IP6 + Ins has been shown to enhance the anticancer effect of conventional chemotherapy, controls cancer metastases, and improves quality of life in cancer patients. Emerging clinical and still vast amount of experimental data suggest its role either as an adjuvant or as an “alternative” to current chemotherapy for cancer.


2020 ◽  
Vol 94 (20) ◽  
Author(s):  
Alžběta Dostálková ◽  
Filip Kaufman ◽  
Ivana Křížová ◽  
Barbora Vokatá ◽  
Tomáš Ruml ◽  
...  

ABSTRACT Proper assembly and disassembly of both immature and mature HIV-1 hexameric lattices are critical for successful viral replication. These processes are facilitated by several host-cell factors, one of which is myo-inositol hexaphosphate (IP6). IP6 participates in the proper assembly of Gag into immature hexameric lattices and is incorporated into HIV-1 particles. Following maturation, IP6 is also likely to participate in stabilizing capsid protein-mediated mature hexameric lattices. Although a structural-functional analysis of the importance of IP6 in the HIV-1 life cycle has been reported, the effect of IP6 has not yet been quantified. Using two in vitro methods, we quantified the effect of IP6 on the assembly of immature-like HIV-1 particles, as well as its stabilizing effect during disassembly of mature-like particles connected with uncoating. We analyzed a broad range of molar ratios of protein hexamers to IP6 molecules during assembly and disassembly. The specificity of the IP6-facilitated effect on HIV-1 particle assembly and stability was verified by K290A, K359A, and R18A mutants. In addition to IP6, we also tested other polyanions as potential assembly cofactors or stabilizers of viral particles. IMPORTANCE Various host cell factors facilitate critical steps in the HIV-1 replication cycle. One of these factors is myo-inositol hexaphosphate (IP6), which contributes to assembly of HIV-1 immature particles and helps maintain the well-balanced metastability of the core in the mature infectious virus. Using a combination of two in vitro methods to monitor assembly of immature HIV-1 particles and disassembly of the mature core-like structure, we quantified the contribution of IP6 and other small polyanion molecules to these essential steps in the viral life cycle. Our data showed that IP6 contributes substantially to increasing the assembly of HIV-1 immature particles. Additionally, our analysis confirmed the important role of two HIV-1 capsid lysine residues involved in interactions with IP6. We found that myo-inositol hexasulphate also stabilized the HIV-1 mature particles in a concentration-dependent manner, indicating that targeting this group of small molecules may have therapeutic potential.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maha I. Alkhalaf ◽  
Wafa S. Alansari ◽  
Fawzia A. Alshubaily ◽  
Afnan M. Alnajeebi ◽  
Areej A. Eskandrani ◽  
...  

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
M Mar Pérez ◽  
Miguel David Ferrer Reynes ◽  
Joaquín Ortega-Castro ◽  
Firas Bassissi ◽  
Joan Perelló ◽  
...  

Abstract Background and Aims Vascular calcification (VC) is a major contributor to increased morbidity and mortality in End Stage Kidney Disease (ESKD) patients undergoing dialysis. SNF472, a salt of inositol hexaphosphate (InsP6), is a selective calcification inhibitor that interferes in the formation and growth of ectopic hydroxyapatite (HAP). SNF472 is currently in Phase 3 clinical trials for the treatment of calciphylaxis in ESKD patients on dialysis. Inositol-1,2,3,5-tetraphosphate-4,6-bisPEG100 (InsP4bisPEG or INS3001) results from the PEGylation of inositol tetraphosphate (InsP4) with polyethylene glycol (PEG) 100. Our aim was to compare the relative bioavailability of SNF472 and InsP4bisPEG and their efficacy in the inhibition of calcification in silico, in vitro and in vivo. Method Subcutaneous (10 mg/kg) pharmacokinetics of InsP4bisPEG and SNF472 were assessed in Sprague Dawley (SD) rats. To evaluate the adsorption binding affinity (Eads) of SNF472, InsP4bisPEG and other inositol phosphates to the HAP crystal surface, computational studies were performed using Density Functional Theory calculations with DMOL3 (MS2016). The in vitro efficacy of the compounds was evaluated using a pharmacodynamic assay to measure the calcification potential of human plasma. An in vivo efficacy study (calcification induced by 3 consecutives daily s.c. administrations of 150 kIU/kg vitamin D3) was performed with SD rats receiving s.c. vehicle, or equimolar doses (36 µmol/kg) of SNF472 or InsP4bisPEG once daily. Results The PEGylation of inositol tetraphosphate in positions 4 and 6 increased the exposure and t1/2 of the compound when given subcutaneously compared to SNF472. Molecular modelling revealed that SNF472 binds to the HAP surface with higher affinity than InsP4bisPEG and INSP4 (ΔEads=-352 kcal/mol for SNF472, ΔEads=-177 kcal/mol for InsP4bisPEG and ΔEads=-146 Kcal/mol for InsP4, taking inositol as reference). These results were correlated with the inhibition of calcium phosphate crystallization in plasma in vitro. SNF472 treated animals presented significantly lower calcium levels in aorta, which were 38% and 55% lower than placebo and InsP4bisPEG treated animals, respectively. Conclusion The differential pharmacokinetic profile of InsP4bisPEG (INS3001) does not translate into higher, but lower, efficacy than SNF472 against vascular calcification when comparing equimolar doses.


Sign in / Sign up

Export Citation Format

Share Document