On Recovering the Duffing System Based on a Modified Gradient Algorithm

Author(s):  
Carlos Aguilar-Ibanez ◽  
Jorge H. ◽  
Ruben Moctezuma
2008 ◽  
Vol 372 (3) ◽  
pp. 210-214 ◽  
Author(s):  
Carlos Aguilar-Ibáñez ◽  
Jorge Sanchez Herrera ◽  
Ruben Garrido-Moctezuma

2020 ◽  
Vol 22 (4) ◽  
pp. 983-990
Author(s):  
Konrad Mnich

AbstractIn this work we analyze the behavior of a nonlinear dynamical system using a probabilistic approach. We focus on the coexistence of solutions and we check how the changes in the parameters of excitation influence the dynamics of the system. For the demonstration we use the Duffing oscillator with the tuned mass absorber. We mention the numerous attractors present in such a system and describe how they were found with the method based on the basin stability concept.


2021 ◽  
Vol 11 (2) ◽  
pp. 546
Author(s):  
Jiajia Xie ◽  
Rui Zhou ◽  
Yuan Liu ◽  
Jun Luo ◽  
Shaorong Xie ◽  
...  

The high performance and efficiency of multiple unmanned surface vehicles (multi-USV) promote the further civilian and military applications of coordinated USV. As the basis of multiple USVs’ cooperative work, considerable attention has been spent on developing the decentralized formation control of the USV swarm. Formation control of multiple USV belongs to the geometric problems of a multi-robot system. The main challenge is the way to generate and maintain the formation of a multi-robot system. The rapid development of reinforcement learning provides us with a new solution to deal with these problems. In this paper, we introduce a decentralized structure of the multi-USV system and employ reinforcement learning to deal with the formation control of a multi-USV system in a leader–follower topology. Therefore, we propose an asynchronous decentralized formation control scheme based on reinforcement learning for multiple USVs. First, a simplified USV model is established. Simultaneously, the formation shape model is built to provide formation parameters and to describe the physical relationship between USVs. Second, the advantage deep deterministic policy gradient algorithm (ADDPG) is proposed. Third, formation generation policies and formation maintenance policies based on the ADDPG are proposed to form and maintain the given geometry structure of the team of USVs during movement. Moreover, three new reward functions are designed and utilized to promote policy learning. Finally, various experiments are conducted to validate the performance of the proposed formation control scheme. Simulation results and contrast experiments demonstrate the efficiency and stability of the formation control scheme.


Sign in / Sign up

Export Citation Format

Share Document