Maximizing SCM content of blended cements

Author(s):  
John Guynn ◽  
John Kline
Keyword(s):  
Author(s):  
Yun Lu ◽  
David C. Joy

High resolution scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA) were performed to investigate microparticles in blended cements and their hydration products containing sodium-rich chemical wastes. The physical appearance of powder particles and the morphological development at different hydration stages were characterized by using high resolution SEM Hitachi S-900 and by SEM S-800 with a EDX spectrometer. Microparticles were dispersed on the sample holder and glued by 1% palomino solution. Hydrated bulk samples were dehydrated by acetone and mounted on the holder by silver paste. Both fracture surfaces and flat cutting sections of hydrating samples were prepared and examined. Some specimens were coated with an 3 nm thick Au-Pd or Cr layer to provide good conducting surfaces. For high resolution SEM S-900 observations the accelerating voltage of electrons was 1-2 KeV to protect the electron charging. Microchemical analyses were carried out by S800/EDS equipped with a LINK detector of take-off angle =40°.


2021 ◽  
Vol 19 (4) ◽  
pp. 315-328
Author(s):  
N.M. Khalil ◽  
Yousif Algamal

This work aims at maximum exploitation of petroleum waste sludge as additive to portland cement to prepare blended cements and hence increasing its production capacity without further firing. This will decrease the main cement industry problems involving environmental pollution such as releasing gases and high-energy consumption during industry and hence maximizes the production economics. Six batches of ordinary portland cement (OPC) mixed with different proportions of petroleum waste sludge (PWS) donated as C1 (control batch contains no PWS), C2 (contains 90 wt.% of OPC+10 wt.% of PWS), C3 (contains 80 wt.% of OPC+20 wt.% of PWS), C4 (contains 70 wt.% of OPC+30 wt.% of PWS), C4 (contains 60 wt.% of OPC+40 wt.% of PWS) and C6 (contains 50 wt.% of OPC+50 wt.% of PWS), were prepared and mixed individually with the suitable amount of mixing water. Cement mixes C2, C3 and C4 showed improved cementing and physicomechanical properties compared with pure cement (C1) with special concern of mix C4. Such improvement is due to the relatively higher surface area as well as the high content of kaolinite and quartz in the added PWS (high pozzalanity) favoring the hydration process evidenced by the increase in the cement hydration product (portlandite mineral (Ca (OH) 2).


2021 ◽  
Vol 271 ◽  
pp. 121823
Author(s):  
J. Moreno-Juez ◽  
Iñigo J. Vegas ◽  
M. Frías Rojas ◽  
R. Vigil de la Villa ◽  
E. Guede-Vázquez

2021 ◽  
Vol 141 ◽  
pp. 106334
Author(s):  
Ran Li ◽  
Lei Lei ◽  
Tongbo Sui ◽  
Johann Plank

1993 ◽  
Vol 5 (19) ◽  
pp. 103-109 ◽  
Author(s):  
P. F. G. Banfill ◽  
L. Bellagraa ◽  
L. Benaggoun
Keyword(s):  

2014 ◽  
Vol 905 ◽  
pp. 191-194 ◽  
Author(s):  
Zbyšek Pavlík ◽  
Milena Pavlíková ◽  
Jan Fořt ◽  
Martina Záleská ◽  
Igor Medveď ◽  
...  

Chemical, physical, morphological, and mineralogical analysis of sewage sludge originating from a waste water treatment plant in Patras, Greece, is presented in the paper. The sewage sludge is firstly dried at 70°C, then oven-burned at 700°C for two hours and milled. The thermally treated material is analyzed using XRF and XRD, the particle size distribution is determined by a laser diffraction method. A potential use of sewage sludge in blended cements is investigated on the basis of the measurement of mechanical and basic physical properties of pastes containing the sludge in an amount of up to 60% of the mass of cement. Experimental results show that the thermal treatment of pre-dried sewage sludge and its grinding provides a material that can be successfully applied as a partial replacement of Portland cement. At a production of blended cements for high strength concrete, an up to 20% cement replacement level can be recommended.


Sign in / Sign up

Export Citation Format

Share Document