Utilization of petroleum sludge wastes for increasing productivity of ordinary portland cement

2021 ◽  
Vol 19 (4) ◽  
pp. 315-328
Author(s):  
N.M. Khalil ◽  
Yousif Algamal

This work aims at maximum exploitation of petroleum waste sludge as additive to portland cement to prepare blended cements and hence increasing its production capacity without further firing. This will decrease the main cement industry problems involving environmental pollution such as releasing gases and high-energy consumption during industry and hence maximizes the production economics. Six batches of ordinary portland cement (OPC) mixed with different proportions of petroleum waste sludge (PWS) donated as C1 (control batch contains no PWS), C2 (contains 90 wt.% of OPC+10 wt.% of PWS), C3 (contains 80 wt.% of OPC+20 wt.% of PWS), C4 (contains 70 wt.% of OPC+30 wt.% of PWS), C4 (contains 60 wt.% of OPC+40 wt.% of PWS) and C6 (contains 50 wt.% of OPC+50 wt.% of PWS), were prepared and mixed individually with the suitable amount of mixing water. Cement mixes C2, C3 and C4 showed improved cementing and physicomechanical properties compared with pure cement (C1) with special concern of mix C4. Such improvement is due to the relatively higher surface area as well as the high content of kaolinite and quartz in the added PWS (high pozzalanity) favoring the hydration process evidenced by the increase in the cement hydration product (portlandite mineral (Ca (OH) 2).

2010 ◽  
Vol 158 ◽  
pp. 1-11 ◽  
Author(s):  
Zi Qiao Jin ◽  
Xian Jun Lu ◽  
Shu Gang Hu

In order to stimulate the potential cementitious property of granulated blast furnace slag (GBFS), the ground GBFS sample (Wei Fang Iron and Steel Corporation, China) was activated by lime and gypsum under different dosages. The results showed that lime is an effective activator for the slag, and the optimum dosage of lime is about 10% (w/w) of the slag. At the optimum dosage of lime, the 28 days compressive strength of the lime-slag paste is higher than that of 32.5 ordinary Portland cement (OPC). But, the early age strength (3 and 7 days compressive strength) of the lime-slag paste is lower than that of the OPC. Addition of gypsum can effectively improve the early age strength of the lime-slag paste. At the ratio of gypsum:lime:slag of 8.2:9.2:82.6 (w/w), both the early and long-term compressive strengths of the gypsum-lime-slag paste are higher than that of the OPC. According to XRD, TG-DTA and SEM detections of the hydration products of the lime-slag paste, the gypsum-lime-slag paste and the OPC paste, it reveals that the hydration process of the GBFS-based cementitious material is different from the ordinary Portland cement and the presence of ettringite (AFt) contributes to the early age strength of the pastes. The major hydration product of the OPC paste (<7 days) were measured as ettringite (AFt), but the AFt phase was not detected in the hydration product of the lime-slag paste and the major hydration product of the lime-slag paste was determined as amorphous CSH gel. However, AFt was detected in the hydration products of the gypsum-lime-slag paste in the early stages of hydration, and the formation of AFt is favorable for the early strength improvement of the material.


Author(s):  
Maysa Lorena Figueiredo Martins ◽  
Richard Rodrigues Barreto ◽  
Paulo Roberto Ribeiro Soares Junior ◽  
Ivete Peixoto Pinheiro ◽  
Augusto Cesar da Silva Bezerra

ABSTRACT: The high demand for concrete has triggered studies on the mitigation of Portland cement production impacts, such as greenhouse gas emissions and energy demands, in addition to enabling cost reduction. Partial replacement of cement with other materials has been employed as an alternative to minimize the damage caused by the cement industry. In this regard, it is necessary to use materials that efficiently replace cement clinker. This study uses waste generated from the production of metallic magnesium as a partial replacement for Portland cement. The substitution is aimed at reducing the amount of clinker used, as its production necessitates high energy consumption and results in emission of large quantities of CO2 into the atmosphere. The tailings were characterized via X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and granulometric analysis. For evaluating the mechanical behavior and porosity, 25% of the cement (by mass) was replaced with tailings, and the resulting composite was molded into cylindrical specimens. After curing for 28 and 91 days, all specimens underwent compression testing. The results of the physical characterization showed that more than 65% of the tailing grain was lesser than 45 μm in size, which contributes to the packaging effect. In terms of the chemical and mineralogical composition, the tailing had high levels of calcium, and the predominant phases could be identified. The compressive strength of the mortar with substitution was higher than 40 MPa. The convergence observed between the results of the different characterization techniques demonstrates the efficiency of using the waste as a supplementary cementitious material.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1084 ◽  
Author(s):  
Adriagni C. Barboza-Chavez ◽  
Lauren Y. Gómez-Zamorano ◽  
Jorge L. Acevedo-Dávila

Hybrid cement has become one of the most viable options in the reduction of CO2 emissions to the environment that are generated by the cement industry. This could be explained by the reduction of the content of clinker in the final mixture and substitution of the remaining percentage with supplementary cementitious materials with the help of an alkaline activation. Following that, properties that are provided by an Ordinary Portland Cement and of a geopolymer are mixed in this type of hybrid material and could be achieved at room temperature. Thereafter, the main objective of this research was to synthesize hybrid cements reducing the clinker content of Portland Cement up to 20% and use metakaolin and fly ash as supplementary cementitious materials in different proportions. The mixtures were alkaline activated with a mixture of sodium silicate and sodium hydroxide, calculating the amounts according to the percentage of Na2O that is present in each of the activators. The samples were then characterized using Compressive strength, X-ray diffraction, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscopy with energy-dispersive X-ray spectroscopy. The results indicated that the hybrid cements have similar mechanical properties than an Ordinary Portland Cement, and they resulted in a dense matrix of hydration products similar to those that are generated by cements and geopolymers.


2020 ◽  
Vol 10 (4) ◽  
pp. 1460
Author(s):  
Viviana Letelier ◽  
José Marcos Ortega ◽  
Rosa María Tremiño ◽  
Bastián I. Henriquéz-Jara ◽  
Ivo Fustos ◽  
...  

Currently, reduction of environmental effects of the cement industry is an issue of global interest and one of the alternatives is to replace clinker with additions such as volcanic powder. The purpose of this work is to study the influence of up to 400 hardening days of volcanic powder, obtained from the last eruption of the Calbuco volcano (Chile), on the pore structure, mechanical performance, and durability-related properties of mortars which incorporate up to 20% volcanic powder as a substitution for clinker. In addition, an evaluation of greenhouse gases emissions was performed in order to quantify the possible environmental benefits of incorporating the volcanic powder in the mortars. The results obtained indicated that mortars with contents of 10% and 20% of volcanic powder had adequate service properties and improved all durability-related properties overall as compared with those noted for ordinary Portland cement. Additionally, the use of up to 20% volcanic powder makes it possible to reduce the CO2 emissions of mortars by almost 20%, demonstrating the advantages of incorporating this addition in mortars.


2018 ◽  
Vol 45 ◽  
pp. 133-138 ◽  
Author(s):  
Rosario García Giménez ◽  
Raquel Vigil de la Villa Mencía ◽  
Moises Frías ◽  
Sagrario Martínez Ramírez ◽  
Iñigo Vegas Ramiro ◽  
...  

Abstract. The cement industry involves high-energy consumption that generates high CO2 emissions into the atmosphere. Environmental concerns can be addressed by replacing parts of Portland cement clinkers with pozzolanic materials in mortars and concrete. Slag, fly ash and silica fume are materials considered for the planned replacement. Research studies on clay minerals, such as kaolinite, are being followed with special attention by the scientific community and the cement industry. It is well known that these minerals require an activation process to transform kaolinite (K) into metakaolinite (MK). MK is an amorphous material from the transformation of K with high pozzolanic activity, which is its capacity to react with the portlandite released during the hydration of Portland cement, generating compounds such as C–S–H gels and some aluminum-phase hydrates. One of the MK production methods is heat treatment controlled by kaolinite at temperatures in the range of 600–900 ∘C. Different residues have been used (coal mining, paper sludge and waste from a drinking water treatment plant) activated at 600 ∘C for 2 h to elaborate blended cements. Due to their good behaviour as future eco-efficient additions, this research is a study by x-ray fluorescence (XRF), x-ray diffraction (XRD) and scanning electron microscopy (SEM) of their influence on the performances of blended cement mixtures (binary and ternary one), with substitutions of pozzolan ratio at 28 days of hydration. The porosity of pozzolanic cements decreases because of the formation of hydrated phases during pozzolanic reaction.


2021 ◽  
Author(s):  
Busola D. Olagunju ◽  
Oludolapo A. Olanrewaju

The concern for environmental related impacts of the cement industry is fast growing in recent times. The industry is challenged with high environmental impact which spans through the entire production process. Life cycle assessment (LCA) evaluates the environmental impact of product or process throughout the cycle of production. This can be done using either or both midpoint (process-oriented) and endpoint (damage-oriented) approaches of life cycle impact assessment (LCIA). This study assessed the environmental impact of 1 kg Ordinary Portland Cement (OPC) using both approaches of LCIA. This analysis was carried out using a data modeled after the rest of the world other than China, India, Europe, US and Switzerland. The dataset was taken from Ecoinvent database incorporated in the SimaPro 9.0.49 software. The result of the analysis showed that clinker production phase produced the highest impact and CO2 is the highest pollutant emitter at both endpoint and midpoint approaches. This is responsible for global warming known to affect both human health and the ecosystem. Also, toxicity in form of emission of high copper affects the ecosystem as well as humans. In addition, high fossil resources (crude oil) are consumed and pose the possibility for scarcity.


1898 ◽  
Vol 46 (1192supp) ◽  
pp. 19108-19109
Author(s):  
Bernard L. Green

2012 ◽  
Vol 2 (1) ◽  
pp. 25
Author(s):  
Ariyadi Basuki ◽  
Maulana Ikhwan Sadikin

Dalam penelitian ini dilakukan serangkaian pengujian untuk mengetahui sifat fisik dari material penyusun (agregat), yang kemudian dirancang komposisi rencana beton dengan mutu K250 (normal/kontrol) dan K250 dengan aditif Silica Fume 10% dari berat semen. Variasi campuran menggunakan tiga tipe semen yang berbeda yaitu Ordinary Portland Cement (OPC)/ Semen Tipe I, Portland Composite Cement (PCC) dan Semen Tipe II. Proses dilanjutkan dengan pembuatan sampel uji silinder berukuran 15 cm x 30 cm (karakteristik kuat tekan, ketahanan sulfat), sampel uji prisma berukuran 20 cm x 20 cm x 12 cm (karakteristik permeabilitas) dan sampel uji kubus berukuran 15 cm x 15 cm x 15 cm (untuk penetrasi klorida). Pengamatan dilakukan untuk melihat karakteristik beton K250 dengan penambahan silica fume 10%, dibandingkan dengan beton normal sebagai acuan, serta aplikasinya dalam lingkungan normal maupun asam (Sulfat, Klor). Hasil kuat tekan memperlihatkan, bahwa campuran dengan menggunakan semen PCC memiliki nilai kuat tekan rata-rata diatas semen OPC. Penambahan silica fume pada campuran semen PCC akan menaikkan nilai kuat tekan sebesar 4,2% dibandingkan beton normal dengan produk semen yang sama, meskipun nilai rasio air-semen nya membesar menjadi 0,71 karena penambahan air. Nilai kuat tekan terbesar diperoleh untuk campuran beton dengan semen Tipe II. Campuran dengan semen PCC (2) menunjukkan nilai penetrasi yang lebih kecil dibandingkan campuran lainnya, hal ini mengindikasikan produk beton yang terbentuk memiliki kepadatan yang lebih baik dari produk campuran lainnya dan tidak porous, sehingga dapat dikatakan memiliki tingkat durabilitas yang cukup baik. Untuk ketahanan terhadap serangan sulfat, beton dengan menggunakan campuran semen tipe II mengalami tingkat pelapukan/penggerusan penampang (scaling) yang lebih besar dibandingkan campuran beton lainnya, meskipun begitu hal ini tidak mempengaruhi nilai kuat tekannya. Untuk produk dengan semen PCC, serangan sulfat tidak mempengaruhi nilai kuat tekannya, bahkan cenderung naik bila dibandingkan pada usia 28 hari.Kata kunci: aspek durabilitas, tipe semen, pemanfaatan silica fume


Sign in / Sign up

Export Citation Format

Share Document