Performance Analysis of Hatch Filtering for Cycle Slips Detection in Single Frequency RTK Positioning

Author(s):  
Salma Zainab Farooq ◽  
Dongkai Yang ◽  
Echoda Ngbede Joshua Ada
Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 856 ◽  
Author(s):  
Wenhao Yang ◽  
Yue Liu ◽  
Fanming Liu

The solution of carrier phase ambiguity is essential for precise global navigation satellite system (GNSS) positioning. Methods of searching in the coordinate domain show their advantage over the methods based on ambiguity fixing, for example, immune to cycle slips, far fewer epochs taken for obtaining the precise solution. However, there are still some drawbacks via using the Ambiguity Function Method (AFM), such as low computation efficiency and the existence of a false global optimum. The false global optimum is a situation where the Least Square (LS) criterion achieves minimum in another place than the point of the actual position, which restricts the application of this method to single-frequency receivers. The numerical search approach derived in this paper is based on the Modified Ambiguity Function Approach (MAFA). It focuses on eliminating the false optimum solution and reducing the computation load by utilizing single-frequency receivers without solving the ambiguity fixing problem. An improved segmented simulated annealing method is used to decrease the computation load while the Kernel Density Estimator (KDE) method is used to filter out the false optimum candidates. Static experiments were carried out to evaluate the performance of the new approach. It is shown that a precise result can be obtained by handling two epochs of data with z coordinate fixed to the referenced value. Meanwhile, the new approach can achieve a millimeter level of position accuracy after dealing with nineteen epochs of observations data when searching in x , y , z domain. The new approach shows its robustness even if the search region is broad, and the prior position is several meters away from the referenced value.


2018 ◽  
Vol 71 (6) ◽  
pp. 1492-1510 ◽  
Author(s):  
Qusen Chen ◽  
Hua Chen ◽  
Weiping Jiang ◽  
Xiaohui Zhou ◽  
Peng Yuan

Cycle slip detection for single frequency Global Navigation Satellite System (GNSS) data is currently mainly based on measurement modelling or prediction, which cannot be effectively performed for kinematic applications and it is difficult to detect or repair small cycle slips such as half-cycle slips. In this paper, a new method that is based on the total differential of ambiguity and Least-Squares Adjustment (LSA) for cycle slip detection and repair is introduced and validated. This method utilises only carrier-phase observations to build an ambiguity function. LSA is then conducted for detecting and repairing cycle slips, where the coordinate and cycle slips are obtained successively. The performance of this method is assessed through processing short and long baselines in static and kinematic modes and the impact of linearization and atmospheric errors are analysed at the same time under a controlled variable method. The results indicate this method is very effective and reliable in detecting and repairing multiple cycle slips, especially small cycle slips.


2019 ◽  
Vol 11 (24) ◽  
pp. 2896
Author(s):  
Zongnan Li ◽  
Min Li ◽  
Chuang Shi ◽  
Liang Chen ◽  
Chenlong Deng ◽  
...  

The development of low-cost, small, modular receivers and their application in diverse scenarios with complex data quality has increased the requirements of single-frequency carrier-phase data preprocessing in real time. Different methods have been developed, but successful detection is not always ensured. The issue is crucial for high-precision positioning with Global Positioning System (GPS). Aiming at a high detection rate and low false-alarm rate, we propose a new cycle-slip detection method based on fuzzy-cluster. It consists of two steps. The first is identification of the epoch when cycle slips appear using Chi-square test based on time-differenced observations. The second is identification of the satellite which suffers from cycle slips using the fuzzy-cluster algorithm. To verify the performance of the proposed method, we compared it to a current robust method using real single-frequency data with simulated cycle slips. Results indicate that the proposed method outperforms the robust estimation method, with a higher correct-detection rate and lower undetection rate. As the number of satellites simulated with cycle slips increases, the correct-detection rate rapidly decreases from 100% to below 50% with the robust estimation method. While the correct-detection rate using the proposed method is always more than 60%, even if the number of satellites simulated with cycle slips reaches five. In addition, the proposed method always has a lower undetection rate than the robust estimation method. Simulation showed that when the number of satellites with cycle slips exceeds three, the undetection rate increases to more than 30%, reaching ~70% for the robust estimation method and less than 30% for the proposed method.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Zhouming Yang ◽  
Xin Liu ◽  
Jinyun Guo ◽  
Yaowei Xia ◽  
Xiaotao Chang

Cycle slip detection and repair play important roles in the processing of data from dual-frequency GPS receivers onboard low-Earth orbit (LEO) satellites. To detect and repair cycle slips more comprehensively, an enhanced error method (EEM) is proposed. EEM combines single-frequency and narrow-lane carrier phase observations to construct special observations and observation equation groups. These special observations differ across time and satellite (ATS). ATS observations are constructed by three steps. The first step is differencing single-frequency and narrow-lane observations through a time difference (TD). The second step is to select a satellite as a reference satellite and other satellites as nonreference satellites. The third step is to difference the single-frequency TD observations from the reference satellite and the narrow-lane TD observations from the nonreference satellites by a satellite difference. If cycle slips occur at the reference satellite, the correction values for these ATS observations can be significantly enlarged. To process all satellites, the EEM selects each satellite as a reference satellite and builds the corresponding equation group. The EEM solves these observation equation groups according to the weighted least-squares adjustment (LSA) criterion and obtains the correction values; these correction values are then used to construct the χ 2 values corresponding to different equation groups, and the EEM subsequently carries out a chi-square distribution test for these χ 2 . The satellite corresponding to the maximum χ 2 will be marked. Then, the EEM iteratively processes the other satellites. Cycle slips can be estimated by rounding the float solutions of changes in the ambiguities of cycle slip satellites to the nearest integer. The simulation test results show that the EEM can be used to detect special cycle slip pairs such as (1, 1) and (9, 7). The EEM needs only observation data in two adjacent epochs and is still applicable to observation epochs with continuous cycle slips.


Sign in / Sign up

Export Citation Format

Share Document