Distributed Coherent Absorption in Quantum Networks for Deterministic Entanglement Generation

Author(s):  
Anton N. Vetlugin ◽  
Ruixiang Guo ◽  
Cesare Soci ◽  
Nikolay I. Zheludev
2015 ◽  
Vol 184 ◽  
pp. 173-182 ◽  
Author(s):  
M. S. Blok ◽  
N. Kalb ◽  
A. Reiserer ◽  
T. H. Taminiau ◽  
R. Hanson

Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 611
Author(s):  
Seungbeom Chin ◽  
Yong-Su Kim ◽  
Sangmin Lee

The indistinguishability of quantum particles is widely used as a resource for the generation of entanglement. Linear quantum networks (LQNs), in which identical particles linearly evolve to arrive at multimode detectors, exploit the indistinguishability to generate various multipartite entangled states by the proper control of transformation operators. However, it is challenging to devise a suitable LQN that carries a specific entangled state or compute the possible entangled state in a given LQN as the particle and mode number increase. This research presents a mapping process of arbitrary LQNs to graphs, which provides a powerful tool for analyzing and designing LQNs to generate multipartite entanglement. We also introduce the perfect matching diagram (PM diagram), which is a refined directed graph that includes all the essential information on the entanglement generation by an LQN. The PM diagram furnishes rigorous criteria for the entanglement of an LQN and solid guidelines for designing suitable LQNs for the genuine entanglement. Based on the structure of PM diagrams, we compose LQNs for fundamental N-partite genuinely entangled states.


2017 ◽  
Vol 2 (3) ◽  
pp. 034002 ◽  
Author(s):  
Suzanne B van Dam ◽  
Peter C Humphreys ◽  
Filip Rozpędek ◽  
Stephanie Wehner ◽  
Ronald Hanson

2020 ◽  
Vol 101 (5) ◽  
Author(s):  
Wai-Keong Mok ◽  
Jia-Bin You ◽  
Leong-Chuan Kwek ◽  
Davit Aghamalyan

2008 ◽  
Vol 78 (6) ◽  
Author(s):  
S. Perseguers ◽  
L. Jiang ◽  
N. Schuch ◽  
F. Verstraete ◽  
M. D. Lukin ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bingzhi Zhang ◽  
Quntao Zhuang

AbstractEntanglement is not only important for understanding the fundamental properties of many-body systems, but also the crucial resource enabling quantum advantages in practical information processing tasks. Although previous works on quantum networks focus on discrete-variable systems, light—as the only traveling carrier of quantum information in a network—is bosonic and thus requires a continuous-variable description. We extend the study to continuous-variable quantum networks. By mapping the ensemble-averaged entanglement dynamics on an arbitrary network to a random-walk process on a graph, we are able to exactly solve the entanglement dynamics. We identify squeezing as the source of entanglement generation, which triggers a diffusive spread of entanglement with a "parabolic light cone”. A surprising linear superposition law in the entanglement growth is predicted by the theory and numerically verified, despite the nonlinear nature of the entanglement dynamics. The equilibrium entanglement distribution (Page curves) is exactly solved and has various shapes depending on the average squeezing density and strength.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Changhao Li ◽  
Tianyi Li ◽  
Yi-Xiang Liu ◽  
Paola Cappellaro

AbstractQuantum network is a promising platform for many ground-breaking applications that lie beyond the capability of its classical counterparts. Efficient entanglement generation on quantum networks with relatively limited resources such as quantum memories is essential to fully realize the network’s capabilities, the solution to which calls for delicate network design and is currently at the primitive stage. In this study we propose an effective routing scheme to enable automatic responses for multiple requests of entanglement generation between source-terminal stations on a quantum lattice network with finite edge capacities. Multiple connection paths are exploited for each connection request while entanglement fidelity is ensured for each path by performing entanglement purification. The routing scheme is highly modularized with a flexible nature, embedding quantum operations within the algorithmic workflow, whose performance is evaluated from multiple perspectives. In particular, three algorithms are proposed and compared for the scheduling of capacity allocation on the edges of quantum network. Embodying the ideas of proportional share and progressive filling that have been well-studied in classical routing problems, we design another scheduling algorithm, the propagatory update method, which in certain aspects overrides the two algorithms based on classical heuristics in scheduling performances. The general solution scheme paves the road for effective design of efficient routing and flow control protocols on applicational quantum networks.


2010 ◽  
Vol 08 (01n02) ◽  
pp. 93-104 ◽  
Author(s):  
LIANG JIANG ◽  
JACOB M. TAYLOR ◽  
ANDERS S. SØRENSEN ◽  
MIKHAIL D. LUKIN

We describe and analyze a hybrid approach to scalable quantum computation based on an optically connected network of few-qubit quantum registers. We show that probabilistically connected five-qubit quantum registers suffice for deterministic, fault-tolerant quantum computation even when state preparation, measurement, and entanglement generation all have substantial errors. We discuss requirements for achieving fault-tolerant operation for two specific implementations of our approach.


Sign in / Sign up

Export Citation Format

Share Document