Nonlinear dynamics of a gyro-rotor, and sensitive dependence on initial conditions of a heavy gyrorotor forced vibration/rotation motion

Author(s):  
K. Hedrih
2020 ◽  
Vol 7 (1) ◽  
pp. 163-175
Author(s):  
Mehdi Pourbarat

AbstractWe study the theory of universality for the nonautonomous dynamical systems from topological point of view related to hypercyclicity. The conditions are provided in a way that Birkhoff transitivity theorem can be extended. In the context of generalized linear nonautonomous systems, we show that either one of the topological transitivity or hypercyclicity give sensitive dependence on initial conditions. Meanwhile, some examples are presented for topological transitivity, hypercyclicity and topological conjugacy.


1992 ◽  
Vol 02 (01) ◽  
pp. 193-199 ◽  
Author(s):  
RAY BROWN ◽  
LEON CHUA ◽  
BECKY POPP

In this letter we illustrate three methods of using nonlinear devices as sensors. We show that the sensory features of these devices is a result of sensitive dependence on parameters which we show is equivalent to sensitive dependence on initial conditions. As a result, we conjecture that sensitive dependence on initial conditions is nature’s sensory device in cases where remarkable feats of sensory perception are seen.


1992 ◽  
Vol 02 (01) ◽  
pp. 1-9 ◽  
Author(s):  
YOHANNES KETEMA

This paper is concerned with analyzing Melnikov’s method in terms of the flow generated by a vector field in contrast to the approach based on the Poincare map and giving a physical interpretation of the method. It is shown that the direct implication of a transverse crossing between the stable and unstable manifolds to a saddle point of the Poincare map is the existence of two distinct preserved homoclinic orbits of the continuous time system. The stability of these orbits and their role in the phenomenon of sensitive dependence on initial conditions is discussed and a physical example is given.


Volume 3 ◽  
2004 ◽  
Author(s):  
Erik D. Svensson

In this work we computationally characterize fluid mixing in a number of passive microfluidic mixers. Generally, in order to systematically study and characterize mixing in realistic fluid systems we (1) compute the fluid flow in the systems by solving the stationary three-dimensional Navier-Stokes equations or Stokes equations with a finite element method, and (2) compute various measures indicating the degree of mixing based on concepts from dynamical systems theory, i.e., the sensitive dependence on initial conditions and mixing variance.


2021 ◽  
Vol 16 (91) ◽  
pp. 125-143
Author(s):  
Aleksei A. Gavrishev ◽  

In this article, based on the mathematical, numerical and computer modeling carried out by the combined application of E&F Chaos, Past, Fractan, Visual Recurrence Analysis, Eviews Student Version Lite programs, some of the well-known 2D models of S-chaos are modeled, the data obtained are studied using nonlinear dynamics methods and the fact of their relation or non-relation to chaotic (quasi-chaotic) processes is established. As a result, it was found that the time diagrams obtained for the studied 2D models of S-chaos have a complex noise-like appearance and are continuous in the time domain. The resulting spectral diagrams have both a complex noise-like and regular appearance and are continuous in the spectral regions. The obtained values of BDS-statistics show that some of the time implementations can be attributed to chaotic (quasi-chaotic) processes. Also, the obtained values of BDS-statistics show that the studied 2D models of S-chaos have a property characteristic of classical chaotic (quasi-chaotic) processes: the slightest change in the initial conditions leads to the generation of a new set of signals. The obtained values of the lower bound of the KS-entropy show that the studied models also have the properties of chaotic (quasi-chaotic). Taking into account the conducted research and data from known works [1–5], it is possible to conclude that 2D models of S-chaos can relate to chaotic (quasi-chaotic) processes.


2020 ◽  
Author(s):  
Merlijn Olthof ◽  
Fred Hasselman ◽  
Anna Lichtwarck-Aschoff

Background: Psychopathology research is changing focus from group-based ‘disease models’ to a personalized approach inspired by complex systems theories. This approach, which has already produced novel and valuable insights into the complex nature of psychopathology, often relies on repeated self-ratings of individual patients. So far it has been unknown whether such self-ratings, the presumed observables of the individual patient as a complex system, actually display complex dynamics. We examine this basic assumption of a complex systems approach to psychopathology by testing repeated self-ratings for three markers of complexity: memory, the presence of (time-varying) short- and long-range temporal correlations, regime shifts, transitions between different dynamic regimes, and, sensitive dependence on initial conditions, also known as the ‘butterfly effect’, the divergence of initially similar trajectories.Methods: We analysed repeated self-ratings (1476 time points) from a single patient for the three markers of complexity using Bartels rank test, (partial) autocorrelation functions, time-varying autoregression, a non-stationarity test, change point analysis and the Sugihara-May algorithm.Results: Self-ratings concerning psychological states (e.g., the item ‘I feel down’) exhibited all complexity markers: time-varying short- and long-term memory, multiple regime shifts and sensitive dependence on initial conditions. Unexpectedly, self-ratings concerning physical sensations (e.g., the item ‘I am hungry’) exhibited less complex dynamics and their behaviour was more similar to random variables. Conclusions: Psychological self-ratings display complex dynamics. The presence of complexity in repeated self-ratings means that we have to acknowledge that (1) repeated self-ratings yield a complex pattern of data and not a set of (nearly) independent data points, (2) humans are ‘moving targets’ whose self-ratings display non-stationary change processes including regime shifts, and (3) long-term prediction of individual trajectories may be fundamentally impossible. These findings point to a limitation of popular statistical time series models whose assumptions are violated by the presence of these complexity markers. We conclude that a complex systems approach to mental health should appreciate complexity as a fundamental aspect of psychopathology research by adopting the models and methods of complexity science. Promising first steps in this direction, such as research on real-time process-monitoring, short-term prediction, and just-in-time interventions, are discussed.


Author(s):  
Laura Ruzziconi ◽  
Abdallah H. Ramini ◽  
Mohammad I. Younis ◽  
Stefano Lenci

This study deals with an experimental and theoretical investigation of an electrically actuated micro-electro-mechanical system (MEMS). The experimental nonlinear dynamics are explored via frequency sweeps in a neighborhood of the first symmetric natural frequency, at increasing values of electrodynamic excitation. Both the non-resonant branch, the resonant one, the jump between them, and the presence of a range of inevitable escape (dynamic pull-in) are observed. To simulate the experimental behavior, a single degree-of-freedom spring mass model is derived, which is based on the information coming from the experimentation. Despite the apparent simplicity, the model is able to catch all the most relevant aspects of the device response. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Nevertheless, the theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because, under realistic conditions, disturbances are inevitably encountered (e.g. discontinuous steps when performing the sweeping, approximations in the modeling, etc.) and give uncertainties to the operating initial conditions. A reliable prediction of the actual (and not only theoretical) response is essential in applications. To take disturbances into account, we develop a dynamical integrity analysis. Integrity profiles and integrity charts are performed. They are able to detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable. Moreover, depending on the magnitude of the expected disturbances, the integrity charts can serve as a design guideline, in order to effectively operate the device in safe condition, according to the desired outcome.


1986 ◽  
Vol 84 (8) ◽  
pp. 4347-4363 ◽  
Author(s):  
John H. Frederick ◽  
Gary M. McClelland

2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Penghe Ge ◽  
Hongjun Cao

The existence of chaos in the Rulkov neuron model is proved based on Marotto’s theorem. Firstly, the stability conditions of the model are briefly renewed through analyzing the eigenvalues of the model, which are very important preconditions for the existence of a snap-back repeller. Secondly, the Rulkov neuron model is decomposed to a one-dimensional fast subsystem and a one-dimensional slow subsystem by the fast–slow dynamics technique, in which the fast subsystem has sensitive dependence on the initial conditions and its snap-back repeller and chaos can be verified by numerical methods, such as waveforms, Lyapunov exponents, and bifurcation diagrams. Thirdly, for the two-dimensional Rulkov neuron model, it is proved that there exists a snap-back repeller under two iterations by illustrating the existence of an intersection of three surfaces, which pave a new way to identify the existence of a snap-back repeller.


Sign in / Sign up

Export Citation Format

Share Document