fast subsystem
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Penghe Ge ◽  
Hongjun Cao

The existence of chaos in the Rulkov neuron model is proved based on Marotto’s theorem. Firstly, the stability conditions of the model are briefly renewed through analyzing the eigenvalues of the model, which are very important preconditions for the existence of a snap-back repeller. Secondly, the Rulkov neuron model is decomposed to a one-dimensional fast subsystem and a one-dimensional slow subsystem by the fast–slow dynamics technique, in which the fast subsystem has sensitive dependence on the initial conditions and its snap-back repeller and chaos can be verified by numerical methods, such as waveforms, Lyapunov exponents, and bifurcation diagrams. Thirdly, for the two-dimensional Rulkov neuron model, it is proved that there exists a snap-back repeller under two iterations by illustrating the existence of an intersection of three surfaces, which pave a new way to identify the existence of a snap-back repeller.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3004
Author(s):  
Danjin Zhang ◽  
Youhua Qian

In this paper, the dynamic behavior of the van der Pol-Rayleigh system is studied by using the fast–slow analysis method and the transformation phase portrait method. Firstly, the stability and bifurcation behavior of the equilibrium point of the system are analyzed. We find that the system has no fold bifurcation, but has Hopf bifurcation. By calculating the first Lyapunov coefficient, the bifurcation direction and stability of the Hopf bifurcation are obtained. Moreover, the bifurcation diagram of the system with respect to the external excitation is drawn. Then, the fast subsystem is simulated numerically and analyzed with or without external excitation. Finally, the vibration behavior and its generation mechanism of the system in different modes are analyzed. The vibration mode of the system is affected by both the fast and slow varying processes. The mechanisms of different modes of vibration of the system are revealed by the transformation phase portrait method, because the system trajectory will encounter different types of attractors in the fast subsystem.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Youhua Qian ◽  
Danjin Zhang ◽  
Bingwen Lin

The complex bursting oscillation and bifurcation mechanisms in coupling systems of different scales have been a hot spot domestically and overseas. In this paper, we analyze the bursting oscillation of a generalized Duffing–Van der Pol system with periodic excitation. Regarding this periodic excitation as a slow-varying parameter, the system can possess two time scales and the equilibrium curves and bifurcation analysis of the fast subsystem with slow-varying parameters are given. Through numerical simulations, we obtain four kinds of typical bursting oscillations, namely, symmetric fold/fold bursting, symmetric fold/supHopf bursting, symmetric subHopf/fold cycle bursting, and symmetric subHopf/subHopf bursting. It is found that these four kinds of bursting oscillations are symmetric. Combining the transformed phase portrait with bifurcation analysis, we can observe bursting oscillations obviously and further reveal bifurcation mechanisms of these four kinds of bursting oscillations.


2021 ◽  
Author(s):  
Yuye Li ◽  
Huaguang Gu ◽  
Yanbing Jia ◽  
Kaihua Ma

Abstract Neuronal bursting is an electrophysiological behavior participating in physiological or pathological functions and a complex nonlinear alternating between burst and quiescent state modulated by slow variables. Identification of dynamics of bursting modulated by two slow variables is still an open problem. In the present paper, a novel fast-slow variable dissection method with two slow variables is proposed to analyze the complex bursting in a 4-dimensional neuronal model to describe bursting associated with pathological pain. The lumenal (Clum) and intracellular (Cin) calcium concentrations are the slowest variables respectively in the quiescent state and burst duration. Questions encountered when the traditional method with one low variable is used. When Clum is taken as slow variable, the burst is successfully identified to terminate near the saddle-homoclinic bifurcation point of the fast subsystem and begin not from the saddle-node bifurcation. With Cin chosen as slow variable, Clum value of initiation point is far from the saddle-node bifurcation point, due to Clum not contained in the equation of membrane potential. To overcome this problem, both Cin and Clum are regarded as slow variables, the two-dimensional fast subsystem exhibits a saddle-node bifurcation point, which is extended to a saddle-node bifurcation curve by introducing Clum dimension. Then, the initial point of burst is successfully identified to be near the saddle-node bifurcation curve. The results present a feasible method for fast-slow variable dissection and deep understanding to the complex bursting behavior with two slow variables, which is helpful for the modulation to pathological pain.


2021 ◽  
Vol 31 (06) ◽  
pp. 2150096
Author(s):  
Kaihua Ma ◽  
Huaguang Gu ◽  
Zhiguo Zhao

The identification of nonlinear dynamics of bursting patterns related to multiple time scales and pathology of brain tissues is still an open problem. In the present paper, representative cases of bursting related to seizure (SZ) and spreading depression (SD) simulated in a theoretical model are analyzed. When the fast–slow variable dissection method with only one slow variable (extracellular potassium concentration, [Formula: see text]) taken as the bifurcation parameter of the fast subsystem is used, the mismatch between bifurcation points of the fast subsystem and the beginning and ending phases of burst appears. To overcome this problem, both slow variables [Formula: see text] and [Formula: see text] (intracellular sodium concentration) are regarded as bifurcation parameters of the fast subsystem, which exhibits three codimension-2 bifurcation points and multiple codimension-1 bifurcation curves containing the saddle-node bifurcation on an invariant cycle (SNIC), the supercritical Hopf bifurcation (the border between spiking and the depolarization block), and the saddle homoclinic (HC) bifurcation. The bursting patterns for SD are related to the Hopf bifurcation and the depolarization block while for SZ to SNIC. Furthermore, at the intersection points between the bursting trajectory and the bifurcation curves in plane ([Formula: see text], [Formula: see text]), the initial or termination phases of burst match the SNIC or HC point well or the Hopf point to a certain extent due to the slow passage effect, showing that the fast–slow variable dissection method with suitable process is still effective to analyze bursting activities. The results present the complex bifurcations underlying the bursting patterns and a proper performing process for the fast–slow variable dissection with two slow variables, which are helpful for modulation to bursting patterns related to brain disfunction.


2021 ◽  
pp. 107754632098819
Author(s):  
Jiahao Zhu ◽  
Jian Zhang ◽  
Jiangling Zhu ◽  
Lingbin Zeng ◽  
Yangjun Pi

In this article, a composite controller is proposed for the manipulator with the flexible joint and link under uncertainties and time-varying disturbances. The dynamic of the system is developed by the Euler–Lagrange and assumed mode method, which is a nonlinear, strong coupling, and underacted system. Therefore, based on the singular perturbation theory, the dynamic is decomposed into a slow and fast subsystem. For the slow dynamic, a novel adaptive-gain super-twisting sliding mode controller is designed to guarantee joint tracking under the uncertainties and disturbances. For the fast dynamics, adaptive dynamic programming is used to deal with the uncertainty. The simulation result shows that the proposed composite controller can effectively track the trajectory and suppress the vibration simultaneously.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10019
Author(s):  
OPhir Nave ◽  
Israel Hartuv ◽  
Uziel Shemesh

In general, a mathematical model that contains many linear/nonlinear differential equations, describing a phenomenon, does not have an explicit hierarchy of system variables. That is, the identification of the fast variables and the slow variables of the system is not explicitly clear. The decomposition of a system into fast and slow subsystems is usually based on intuitive ideas and knowledge of the mathematical model being investigated. In this study, we apply the singular perturbed vector field (SPVF) method to the COVID-19 mathematical model of to expose the hierarchy of the model. This decomposition enables us to rewrite the model in new coordinates in the form of fast and slow subsystems and, hence, to investigate only the fast subsystem with different asymptotic methods. In addition, this decomposition enables us to investigate the stability analysis of the model, which is important in case of COVID-19. We found the stable equilibrium points of the mathematical model and compared the results of the model with those reported by the Chinese authorities and found a fit of approximately 96 percent.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4562
Author(s):  
Junjie Zhu ◽  
Bingda Zhang

For the problem of poor accuracy of the existing multi-rate simulation methods, this paper proposes a multi-rate real-time simulation method based on the Norton equivalent, compared with multi-rate simulation method based on the ideal source equivalent. After the Norton equivalence of the fast subsystem and the slow subsystem are established, they are solved simultaneously at the junction nodes. In order to reduce the amount of the simulation calculation, the Norton equivalent circuit is obtained by incremental calculation. The data interaction between the fast subsystem and the slow subsystem is realized by extrapolation method. For ensuring the real-time performance of the simulation, the method of the slow subsystem calculates ahead of the fast subsystem is given for the slow subsystem with a large amount of calculation. Finally, the AC/DC hybrid power system was simulated on the real-time simulation platform (FPGA-based Real-Time Digital Solver, FRTDS), and the simulation results were compared with the single-rate simulation, which verified the correctness and accuracy of the proposed method.


Author(s):  
Junjie Zhu ◽  
Bingda Zhang

For the problem of poor accuracy of the existing multi-rate simulation methods, this paper proposes a multi rate real-time simulation method based on the Norton equivalent, compared with multi-rate simulation method based on the ideal source equivalent. After the Norton equivalence of the fast subsystem and the slow subsystem, they are obtained simultaneously at the junction nodes. In order to reduce the amount of simulation calculation, the Norton equivalent circuit is obtained by incremental calculation. The data interface between the fast subsystem and the slow subsystem is realized by extrapolation method. For ensuring the real-time performance of the simulation, the method that the slow subsystem calculates ahead of the fast subsystem is given for the slow subsystem with a large amount of calculation. Finally, the AC/DC hybrid power system was simulated on the real-time simulation platform (FRTDS), and the simulation results were compared with the single-rate simulation, which verified the correctness and accuracy of the method.


2020 ◽  
Vol 90 (3) ◽  
pp. 501
Author(s):  
О.Е. Дик

The transitions from tonic spiking to bursting for the nociceptive neuron model have been studied with changing the external stimulus value. The presence of the fold limit cycle bifurcation in the structure of the bifurcation diagram of the fast subsystem and the torus bifurcation in the structure of the bifurcation diagram of the full system lead to the emergence of special solutions of the type torus canards in these transitions. This confirms the assumption that torus canards are an obligatory feature for transitions between rhythmic and burst discharges


Sign in / Sign up

Export Citation Format

Share Document