scholarly journals Machine Learning Systems in the IoT: Trustworthiness Trade-offs for Edge Intelligence

Author(s):  
Wiebke Toussaint ◽  
Aaron Yi Ding
2018 ◽  
Vol 12 ◽  
pp. 85-98
Author(s):  
Bojan Kostadinov ◽  
Mile Jovanov ◽  
Emil STANKOV

Data collection and machine learning are changing the world. Whether it is medicine, sports or education, companies and institutions are investing a lot of time and money in systems that gather, process and analyse data. Likewise, to improve competitiveness, a lot of countries are making changes to their educational policy by supporting STEM disciplines. Therefore, it’s important to put effort into using various data sources to help students succeed in STEM. In this paper, we present a platform that can analyse student’s activity on various contest and e-learning systems, combine and process the data, and then present it in various ways that are easy to understand. This in turn enables teachers and organizers to recognize talented and hardworking students, identify issues, and/or motivate students to practice and work on areas where they’re weaker.


2019 ◽  
Author(s):  
Kasper Van Mens ◽  
Joran Lokkerbol ◽  
Richard Janssen ◽  
Robert de Lange ◽  
Bea Tiemens

BACKGROUND It remains a challenge to predict which treatment will work for which patient in mental healthcare. OBJECTIVE In this study we compare machine algorithms to predict during treatment which patients will not benefit from brief mental health treatment and present trade-offs that must be considered before an algorithm can be used in clinical practice. METHODS Using an anonymized dataset containing routine outcome monitoring data from a mental healthcare organization in the Netherlands (n = 2,655), we applied three machine learning algorithms to predict treatment outcome. The algorithms were internally validated with cross-validation on a training sample (n = 1,860) and externally validated on an unseen test sample (n = 795). RESULTS The performance of the three algorithms did not significantly differ on the test set. With a default classification cut-off at 0.5 predicted probability, the extreme gradient boosting algorithm showed the highest positive predictive value (ppv) of 0.71(0.61 – 0.77) with a sensitivity of 0.35 (0.29 – 0.41) and area under the curve of 0.78. A trade-off can be made between ppv and sensitivity by choosing different cut-off probabilities. With a cut-off at 0.63, the ppv increased to 0.87 and the sensitivity dropped to 0.17. With a cut-off of at 0.38, the ppv decreased to 0.61 and the sensitivity increased to 0.57. CONCLUSIONS Machine learning can be used to predict treatment outcomes based on routine monitoring data.This allows practitioners to choose their own trade-off between being selective and more certain versus inclusive and less certain.


2021 ◽  
Vol 23 (1) ◽  
pp. 32-41
Author(s):  
Pieter Delobelle ◽  
Paul Temple ◽  
Gilles Perrouin ◽  
Benoit Frénay ◽  
Patrick Heymans ◽  
...  

Machine learning is being integrated into a growing number of critical systems with far-reaching impacts on society. Unexpected behaviour and unfair decision processes are coming under increasing scrutiny due to this widespread use and its theoretical considerations. Individuals, as well as organisations, notice, test, and criticize unfair results to hold model designers and deployers accountable. We offer a framework that assists these groups in mitigating unfair representations stemming from the training datasets. Our framework relies on two inter-operating adversaries to improve fairness. First, a model is trained with the goal of preventing the guessing of protected attributes' values while limiting utility losses. This first step optimizes the model's parameters for fairness. Second, the framework leverages evasion attacks from adversarial machine learning to generate new examples that will be misclassified. These new examples are then used to retrain and improve the model in the first step. These two steps are iteratively applied until a significant improvement in fairness is obtained. We evaluated our framework on well-studied datasets in the fairness literature - including COMPAS - where it can surpass other approaches concerning demographic parity, equality of opportunity and also the model's utility. We investigated the trade-offs between these targets in terms of model hyperparameters and also illustrated our findings on the subtle difficulties when mitigating unfairness and highlight how our framework can assist model designers.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2514
Author(s):  
Tharindu Kaluarachchi ◽  
Andrew Reis ◽  
Suranga Nanayakkara

After Deep Learning (DL) regained popularity recently, the Artificial Intelligence (AI) or Machine Learning (ML) field is undergoing rapid growth concerning research and real-world application development. Deep Learning has generated complexities in algorithms, and researchers and users have raised concerns regarding the usability and adoptability of Deep Learning systems. These concerns, coupled with the increasing human-AI interactions, have created the emerging field that is Human-Centered Machine Learning (HCML). We present this review paper as an overview and analysis of existing work in HCML related to DL. Firstly, we collaborated with field domain experts to develop a working definition for HCML. Secondly, through a systematic literature review, we analyze and classify 162 publications that fall within HCML. Our classification is based on aspects including contribution type, application area, and focused human categories. Finally, we analyze the topology of the HCML landscape by identifying research gaps, highlighting conflicting interpretations, addressing current challenges, and presenting future HCML research opportunities.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


Author(s):  
Yiming Tang ◽  
Raffi Khatchadourian ◽  
Mehdi Bagherzadeh ◽  
Rhia Singh ◽  
Ajani Stewart ◽  
...  

2021 ◽  
Author(s):  
Fadheela Hussain ◽  
Mustafa Hammad ◽  
Wael El-Medany ◽  
Riadh Ksantini

Sign in / Sign up

Export Citation Format

Share Document