A Dual-Band Multilayer Heterogeneous Frequency Selective Surface with Miniaturized Unit Cell

Author(s):  
Yichun Cui ◽  
Shengjun Zhang ◽  
Jiaqi Liu ◽  
Xin liu ◽  
Hui Xue ◽  
...  
2020 ◽  
pp. 100-103
Author(s):  
Singaram M ◽  
Krishna Kumar E ◽  
Chandraprasad V ◽  
Finney Daniel Shadrach ◽  
Gowthaman Manoharan

A single layer novel compact frequency selective surface which is used in reflector antenna is designed and simulated. The proposed unit cell reflects electromagnetic waves in K and Ka band with maximum reflection occurring at 22.62 GHz and 35.44 GHz respectively. The designed FSS find its application in satellite communication. A crossed dipole structure in center and two-legged structure in corners with square loop in each quadrant makes the FSS unit cell structure. The FSS is designed with oblique incidence for transverse electric and transverse magnetic polarization with return loss 0.3 dB in 22.62 GHz and less than 0.5 dB in 35.44 GHz. The proposed work shows frequency independence against oblique angle of incidence. The simulated result from CST microwave studio is compared with other similar works.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2880
Author(s):  
Bram Decoster ◽  
Stephanie Maes ◽  
Iñigo Cuiñas ◽  
Manuel García Sánchez ◽  
Rafael Caldeirinha ◽  
...  

Due to the global growth in popularity of Fifth Generation (5G) cellular communications, the demand for shielding against it has risen for a variety of applications, mainly related to cybersecurity but also to isolation, calm areas and so on. This research paper aims to provide a suitable dual-band fractal FSS (Frequency Selective Surface) for the 5G lower band frequencies: 750 MHz and 3.5 GHz. The unit cell is in the shape of a bow tie, where each of the triangular parts are Sierpiński triangles. One major addition to the unit cell is a central metal strip to make the manufacturing of the FSS more feasible and to tune the operation frequencies and bandwidths. As with each different stage of a fractal antenna, the different stages of the fractal FSS design behave differently. For this application, stage 2 is sufficient, as we are able to cover frequency bands among those included in the FR1 5G spectrum. Some equations were derived using linear regression in order to provide specific design tools for building an FSS. These equations have high accuracy and can be used to adapt the proposed design to other frequencies. Some other parameters, which are not represented in the aforementioned equations, can also be adjusted for minor tweaking of the final design. This design performs well except under large incidence angles. This should be taken into account when proposing the installation of a structure based on it. A good agreement between simulation and measurement results is observed.


Author(s):  
Alfredo Gomes Neto ◽  
Jefferson Costa e Silva ◽  
Alexandre Jean Rene Serres ◽  
Marina de Oliveira Alencar ◽  
Ianes Barbosa Grecia Coutinho ◽  
...  

Author(s):  
Rahul Krishnan ◽  
R. Ganesan ◽  
K Baskaran ◽  
Annie Grace Vimala ◽  
John Kalloor ◽  
...  

Author(s):  
Achilles D. Boursianis ◽  
Marco Salucci ◽  
Stavros Koulouridis ◽  
Apostolos Georgiadis ◽  
Manos Tentzeris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document