High-Speed and Low-Power Network Search Engine Using Adaptive Block-Selection Scheme

Author(s):  
M.J. Akhbarizadeh ◽  
M. Nourani ◽  
R. Panigrahy ◽  
S. Sharma
2019 ◽  
Vol 8 (2) ◽  
pp. 2454-2458

Compared to Binary Content Addressable Memory (BiCAM) there are many applications for Ternary Content Addressable Memory (TCAM) as a search engine. But TCAM consumes more power than BiCAM. So, the saving of TCAM power consumption is the main objective of numerous designs. Precharge phase of the TCAM leads to more power consumption. Newly, a precharge free NOR type BiCAM has been suggested but it takes more time for its operation. Here, precharge free high speed NOR type TCAM is proposed. The proposed TCAM architecture takes power same as precharge free NOR type TCAM but its delay has been reduced by 84% . Simulations performed with cadence 45-nm technology at the supply voltage of 1V.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 639
Author(s):  
Arūnas Statkus ◽  
Šarūnas Paulikas ◽  
Audrius Krukonis

Paper investigates transport control protocol (TCP) acknowledgment (ACK) optimization in low power or embedded devices to improve their performance on high-speed links by limiting the ACK rate. Today the dominant protocol for interconnecting network devices is the TCP and it has a great influence on the entire network operation if the processing power of network devices is exhausted to the processing data from the TCP stack. Therefore, on high-speed not congested networks the bottleneck is no longer the network link but low-processing power network devices. A new ACK optimization algorithm has been developed and implemented in the Linux kernel. Proposed TCP stack modification minimizes the unneeded technical expenditure from TCP flow by reducing the number of ACKs. The results of performed experiments show that TCP ACK rate limiting leads to the noticeable decrease of CPU utilization on low power devices and an increase of TCP session throughput but does not impact other TCP QoS parameters, such as session stability, flow control, connection management, congestion control or compromises link security. Therefore, more resources of the low-power network devices could be allocated for high-speed data transfer.


2013 ◽  
Vol E96.C (8) ◽  
pp. 1076-1082 ◽  
Author(s):  
Hisashi IWAMOTO ◽  
Yuji YANO ◽  
Yasuto KURODA ◽  
Koji YAMAMOTO ◽  
Kazunari INOUE ◽  
...  
Keyword(s):  

2019 ◽  
Vol 7 (1) ◽  
pp. 24
Author(s):  
N. SURESH ◽  
K. S. SHAJI ◽  
KISHORE REDDY M. CHAITANYA ◽  
◽  
◽  
...  

Author(s):  
A. Suresh Babu ◽  
B. Anand

: A Linear Feedback Shift Register (LFSR) considers a linear function typically an XOR operation of the previous state as an input to the current state. This paper describes in detail the recent Wireless Communication Systems (WCS) and techniques related to LFSR. Cryptographic methods and reconfigurable computing are two different applications used in the proposed shift register with improved speed and decreased power consumption. Comparing with the existing individual applications, the proposed shift register obtained >15 to <=45% of decreased power consumption with 30% of reduced coverage area. Hence this proposed low power high speed LFSR design suits for various low power high speed applications, for example wireless communication. The entire design architecture is simulated and verified in VHDL language. To synthesis a standard cell library of 0.7um CMOS is used. A custom design tool has been developed for measuring the power. From the results, it is obtained that the cryptographic efficiency is improved regarding time and complexity comparing with the existing algorithms. Hence, the proposed LFSR architecture can be used for any wireless applications due to parallel processing, multiple access and cryptographic methods.


Author(s):  
Ahmed K. Jameil ◽  
Yasir Amer Abbas ◽  
Saad Al-Azawi

Background: The designed circuits are tested for faults detection in fabrication to determine which devices are defective. The design verification is performed to ensure that the circuit performs the required functions after manufacturing. Design verification is regarded as a test form in both sequential and combinational circuits. The analysis of sequential circuits test is more difficult than in the combinational circuit test. However, algorithms can be used to test any type of sequential circuit regardless of its composition. An important sequential circuit is the finite impulse response (FIR) filters that are widely used in digital signal processing applications. Objective: This paper presented a new design under test (DUT) algorithm for 4-and 8-tap FIR filters. Also, the FIR filter and the proposed DUT algorithm is implemented using field programmable gate arrays (FPGA). Method: The proposed test generation algorithm is implemented in VHDL using Xilinx ISE V14.5 design suite and verified by simulation. The test generation algorithm used FIR filtering redundant faults to obtain a set of target faults for DUT. The fault simulation is used in DUT to assess the benefit of test pattern in fault coverage. Results: The proposed technique provides average reductions of 20 % and 38.8 % in time delay with 57.39 % and 75 % reductions in power consumption and 28.89 % and 28.89 % slices reductions for 4- and 8-tap FIR filter, respectively compared to similar techniques. Conclusions: The results of implementation proved that a high speed and low power consumption design can be achieved. Further, the speed of the proposed architecture is faster than that of existing techniques.


Sign in / Sign up

Export Citation Format

Share Document