Silicon germanium heterobipolar transistor for high speed operation

Author(s):  
E. Kasper ◽  
A. Gruhle
Keyword(s):  
1998 ◽  
Vol 45 (9) ◽  
pp. 2085-2088 ◽  
Author(s):  
Jyh-Jier Ho ◽  
Y.K. Fang ◽  
Kun-Hsien Wu ◽  
W.T. Hsieh ◽  
S.C. Huang ◽  
...  

2021 ◽  
Vol 255 ◽  
pp. 01002
Author(s):  
Daniel Benedikovic ◽  
Leopold Virot ◽  
Guy Aubin ◽  
Jean-Michel Hartmann ◽  
Farah Amar ◽  
...  

Optical photodetectors are at the forefront of photonic research since the rise of integrated optics. Photodetectors are fundamental building blocks for chip-scale optoelectronics, enabling conversion of light into an electrical signal. Such devices play a key role in many surging applications from communication and computation to sensing, biomedicine and health monitoring, to name a few. However, chip integration of optical photodetectors with improved performances is an on-going challenge for mainstream optical communications at near-infrared wavelengths. Here, we present recent advances in heterostructured silicon-germanium-silicon p-i-n photodetectors, enabling high-speed detection on a foundry-compatible monolithic platform.


1982 ◽  
Vol 21 (Part 1, No. 11) ◽  
pp. 1559-1565 ◽  
Author(s):  
Katsumi Murase ◽  
Yoshihito Amemiya ◽  
Yoshihiko Mizushima

2005 ◽  
Vol 15 (03) ◽  
pp. 477-495 ◽  
Author(s):  
SHANTHI PAVAN ◽  
MAURICE TARSIA ◽  
STEFFEN KUDSZUS ◽  
DAVID PRITZKAU

We present design considerations for high speed high swing differential modulator drivers in SiGe BiCMOS technology. Trade-offs between lumped and distributed designs, and linear and limiting amplifiers are examined. The design of a 6 V output modulator driver is discussed in detail. The driver features a unique bias generation and distribution circuit that enables low power-supply operation. Simulation results and measurements are given.


1994 ◽  
Vol 270 (3) ◽  
pp. 62-67 ◽  
Author(s):  
Bernard S. Meyerson
Keyword(s):  

2003 ◽  
Vol 13 (01) ◽  
pp. 221-237
Author(s):  
KARL E. FRITZ ◽  
BARBARA A. RANDALL ◽  
GREGG J. FOKKEN ◽  
MICHAEL J. DEGERSTROM ◽  
MICHAEL J. LORSUNG ◽  
...  

Under the auspices of Defense Advanced Research Project Agency's Microsystems Technology Office (DARPA/MTO) Low Power Electronics Program, the Mayo Foundation Special Purpose Processor Development Group is exploring ways to reduce circuit power consumption, while maintaining or increasing functionality, for existing military systems. Applications presently being studied include all-digital radar receivers, electronic warfare receivers, and other types of digital signal processors. One of the integrated circuit technologies currently under investigation to support such military systems is the IBM Corporation silicon germanium (SiGe) BiCMOS process. In this paper, design methodology, simulations and test results from demonstration circuits developed for these applications and implemented in the IBM SiGe BiCMOS 5HP (50 GHz fT HBTs with 0.5 μm CMOS) and 7HP (120 GHz fT HBTs with 0.18 μm CMOS) technologies will be presented.


2019 ◽  
Vol 85 (1) ◽  
pp. 10101 ◽  
Author(s):  
Avtar Singh ◽  
Chandan Kumar Pandey ◽  
Saurabh Chaudhury ◽  
Chandan Kumar Sarkar

In this paper, we have presented an analysis on the performance of a strained silicon channel in silicon nanotube FET (Si-NTFET) device. Si-NTFET devices have tube-shaped channel region and because of this conduction in the channel can be controlled in two ways from outside the tube and from inside (from hollow side) the tube which results in better control over the short channel effects (SCEs). Bi-axial strain induced into the device by the inclusion of silicon-–germanium layer in between the channel. Three-dimensional simulations of the structure are carried out using ATLAS TCAD simulator and the model is calibrated with respect to previously published experimental data. The transfer characteristics, drain induced barrier lowering (DIBL), threshold voltage, Ion and Ioff, subthreshold swing of the Si-NTFET and strained Si-NTFET devices are investigated. It is seen that in strained Si-NTFET, the drive capability and inversion charge density is much higher compared to that of Si-NTFET. Evaluation of electrical performances confirms that the DIBL and other SCEs are either reduced or remains the same. However, the use of strained Si-NTFET is more suited for high speed and low power applications.


Sign in / Sign up

Export Citation Format

Share Document