Accelerated Global MPPT for Multimode Series Resonant DC-DC Converter

Author(s):  
Vadim Sidorov ◽  
Andrii Chub ◽  
Dmitri Vinnikov
Keyword(s):  
2019 ◽  
pp. 56-61
Author(s):  
Huang ChunXiang ◽  
Henadiy Pavlov ◽  
Mykhailo Pokrovskyi ◽  
Andriy Obrubov ◽  
Iryna Vinnychenko

The research object is the electromagnetic processes in the semiconductor power converters based on the schemes with circuit commutation and containing resonant circuits of reactive elements and transformers with a small coupling coefficient. The research aim is to develop a technology for a fast wireless battery charging for the use in clean energy vehicles, which would be based on a resonant converter with a pulse-count adjustment with a phase shift control. The latter provides a high energy performance in a wide range of regulation and a low sensitivity to changes in the magnetic system parameters. This is a final report. The report presents the results of the work performed in accordance with the Terms of Reference for the second stage of the scientific and research work. The following theoretical problems have been solved: development of a mathematical model of a series resonant converter with a pulse-count adjustment for contactless inductive energy transmission, which provided a high accuracy for the studies of the electromagnetic processes in the power section of multi-circuit resonant converters for contactless energy transmission, as well as an opportunity to assess the energy parameters of multi-circuit converters at pulse-count adjustment; compilation of mathematical dependencies of the average input and output current values on the number of half-cycles of resonant oscillations during energy transmission to the circuit and energy dissipation, the supply voltage and the resonant circuit’s parameters, which allowed assessing the converter’s energy parameters over a wide control range; compilation of the dependencies of the converter’s output power and coefficient of efficiency on the number of halfcycles of resonant oscillations during energy transmission to the circuit and energy dissipation, on supply voltage and on the resonant circuit’s parameters, which made it possible to evaluate the efficiency of the pulse-count adjustment of resonant converters for contactless energy transmission; realization of a dynamic model of a resonant converter for contactless energy transmission in the form of transfer functions for small disturbances caused by fluctuations in supply voltage, which made it possible to estimate the effect of its instability on the quality of output current stabilization.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 892
Author(s):  
Jicong Zhao ◽  
Zheng Zhu ◽  
Haiyan Sun ◽  
Shitao Lv ◽  
Xingyu Wang ◽  
...  

This paper presents a micro-electro-mechanical systems (MEMS) processing technology for Aluminum Nitride (AlN) Lamb-wave resonators (LWRs). Two LWRs with different frequencies of 402.1 MHz and 2.097 GHz by varying the top interdigitated (IDT) periods were designed and fabricated. To avoid the shortcomings of the uncontrollable etching of inactive areas during the releasing process and to improve the fabrication yield, a thermal oxide layer was employed below the platted polysilicon sacrificial layer, which could define the miniaturized release cavities well. In addition, the bottom Mo electrode that was manufactured had a gentle inclination angle, which could contribute to the growth of the high-quality AlN piezoelectric layer above the Mo layer and effectively prevent the device from breaking. The measured results show that the IDT-floating resonators with 12 μm and 2 μm electrode periods exhibit a motional quality factor (Qm) as high as 4382 and 1633. The series resonant frequency (fs)·Qm values can reach as high as 1.76 × 1012 and 3.42 × 1012, respectively. Furthermore, Al is more suitable as the top IDT material of the AlN LWRs than Au, and can contribute to achieving an excellent electrical performances due to the smaller density, smaller thermo-elastic damping (TED), and larger acoustic impedance difference between Al and AlN.


Author(s):  
A. Nakajima ◽  
K. Oku ◽  
J. Nishidai ◽  
T. Shiraishi ◽  
Y. Ogihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document