Calibration Error of Impatt Noise Generator of mm-Range Radiometric Equipment

Author(s):  
A. F. Yanenko ◽  
S. N. Peregudov
2020 ◽  
Vol 86 (5) ◽  
pp. 16-21
Author(s):  
T. A. Karimova ◽  
G. L. Buchbinder ◽  
S. V. Kachin

Calibration by the concentration ratio provides better metrological characteristics compared to other calibration modes when using the inductively coupled plasma atomic emission spectrometry (ICP-AES) for analysis of geological samples and technical materials on their base. The main reasons for the observed improvement are: i) elimination of the calibration error of measuring vessels and the error of weighing samples of the analyzed materials from the total error of the analysis; ii) high intensity of the lines of base element; and iii) higher accuracy of measuring the ratio of intensities compared to that of measuring the absolute intensities. Calcium oxide is better suited as a base when using calibration by the concentration ratio in analysis of carbonate rocks, technical materials, slags containing less than 20% SiO2 and more than 20% CaO. An equation is derived to calculate the content of components determined in carbonate materials when using calibration by the concentration ratio. A method of ICP-AES with calibration by the concentration ratio is developed for determination of CaO (in the range of contents 20 – 100%), SiO2 (2.0 – 35%), Al2O3 (0.1 – 30%), MgO (0.1 – 20%), Fe2O3 (0.5 – 40%), Na2O (0.1 – 15%), K2O (0.1 – 5%), P2O5 (0.001 – 2%), MnO (0.01 – 2%), TiO2 (0.01 – 2.0%) in various carbonate materials. Acid decomposition of the samples in closed vessels heated in a HotBlock 200 system is proposed. Correctness of the procedure is confirmed in analysis of standard samples of rocks. The developed procedure was used during the interlaboratory analysis of the standard sample of slag SH17 produced by ZAO ISO (Yekaterinburg, Russia).


Author(s):  
Christoph Kolja Boese ◽  
Tim Rolvien ◽  
Matthias Trost ◽  
Michael Frink ◽  
Jan Hubert ◽  
...  

Abstract Objective Preoperative digital templating is a standard procedure in total hip arthroplasty. Deviations between template size and final implant size may result from inaccurate calibration, templating as well as intraoperative decisions. So far, the explicit effect of calibration errors on templating has not been addressed adequately. Materials and Methods A mathematical simulation of calibration errors up to ± 24% was applied to the templating of acetabular cups (38 to 72 mm diameter). The effect of calibration errors on template component size as deviation from optimal size was calculated. Results The relationship between calibration error and component size deviation is inverse and linear. Calibration errors have a more pronounced effect on larger component sizes. Calibration errors of 2–6% result in templating errors of up to two component sizes. Common errors of up to 12% may result in templating errors of 3–4 sizes for common implant sizes. A tabular matrix visualizes the effect. Conclusion Calibration errors play a significant role in component size selection during digital templating. Orthopedic surgeons should be aware of this effect and try to identify and address this source of error.


2020 ◽  
Vol 638 ◽  
pp. L1 ◽  
Author(s):  
S. Joudaki ◽  
H. Hildebrandt ◽  
D. Traykova ◽  
N. E. Chisari ◽  
C. Heymans ◽  
...  

We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeling of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a 0.8σ reduction in the DES-inferred value for S​8, which decreases to a 0.5σ reduction when including a systematic redshift calibration error model from mock DES data based on the MICE2 simulation. The combined KV450+DES-Y1 constraint on S8 = 0.762−0.024+0.025 is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of 2.5σ. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak-lensing surveys.


2014 ◽  
Vol 10 (S305) ◽  
pp. 102-107
Author(s):  
David F. Elmore

AbstractThe Daniel K. Inouye Solar Telescope (DKIST), formerly Advanced Technology Solar Telescope when it begins operation in 2019 will be by a significant margin Earth's largest solar research telescope. Science priorities dictate an initial suite of instruments that includes four spectro-polarimeters. Accurate polarization calibration of the individual instruments and of the telescope optics shared by those instruments is of critical importance. The telescope and instruments have been examined end-to-end for sources of polarization calibration error, allowable contributions from each of the sources quantified, and techniques identified for calibrating each of the contributors. Efficient use of telescope observing time leads to a requirement of sharing polarization calibrations of common path telescope components among the spectro-polarimeters and for those calibrations to be repeated only as often as dictated by degradation of optical coatings and instrument reconfigurations. As a consequence the polarization calibration of the DKIST is a facility function that requires facility wide techniques.


2007 ◽  
Vol 7 (2) ◽  
pp. 459-469 ◽  
Author(s):  
M. Ekström ◽  
P. Eriksson ◽  
B. Rydberg ◽  
D. P. Murtagh

Abstract. Odin-SMR is a limb-sounder operating in the 500 GHz region with the capability of performing measurements down to altitudes of about 10 km with relatively low influence of ice clouds. Until now spectra from tropospheric tangent altitudes have been disregarded due to inadequate handling of scattering. A first method to extract upper tropospheric quantities has now been developed, yielding the humidity in two layers around 200 and 130 hPa and information on cloud ice content above 200 hPa. First results are compared with in situ MOZAIC measurements and presented to give a global view of the horizontal distribution. The seasonal structures are in agreement with other satellite measurements. The main concern for these retrievals is the calibration performance. A careful analysis indicates a systematic calibration error of about 1 K, but also a random component that differs between the two bands. The random calibration uncertainty results in retrieval errors of 10–60% depending on humidity and band. Presently this prohibits use of single retrievals, but averages can be presented with good accuracy. The fixed calibration error can largely be removed, leaving the spectroscopic uncertainties to dominate the humidity retrieval accuracy, with a worst case estimate of 30%. However, the comparison of MOZAIC data and the measurements for the 200 hPa layer shows a systematic difference of <10%. This indicates that the actual systematic error is low and gives further confidence in the capability of Odin-SMR to measure humidity in the upper tropical troposphere.


1997 ◽  
Vol 6 (4) ◽  
pp. 413-432 ◽  
Author(s):  
Richard L. Holloway

Augmented reality (AR) systems typically use see-through head-mounted displays (STHMDs) to superimpose images of computer-generated objects onto the user's view of the real environment in order to augment it with additional information. The main failing of current AR systems is that the virtual objects displayed in the STHMD appear in the wrong position relative to the real environment. This registration error has many causes: system delay, tracker error, calibration error, optical distortion, and misalignment of the model, to name only a few. Although some work has been done in the area of system calibration and error correction, very little work has been done on characterizing the nature and sensitivity of the errors that cause misregistration in AR systems. This paper presents the main results of an end-to-end error analysis of an optical STHMD-based tool for surgery planning. The analysis was done with a mathematical model of the system and the main results were checked by taking measurements on a real system under controlled circumstances. The model makes it possible to analyze the sensitivity of the system-registration error to errors in each part of the system. The major results of the analysis are: (1) Even for moderate head velocities, system delay causes more registration error than all other sources combined; (2) eye tracking is probably not necessary; (3) tracker error is a significant problem both in head tracking and in system calibration; (4) the World (or reference) coordinate system adds error and should be omitted when possible; (5) computational correction of optical distortion may introduce more delay-induced registration error than the distortion error it corrects, and (6) there are many small error sources that will make submillimeter registration almost impossible in an optical STHMD system without feedback. Although this model was developed for optical STHMDs for surgical planning, many of the results apply to other HMDs as well.


Sign in / Sign up

Export Citation Format

Share Document