The intelligent software application method: Real time mode lengering object monitoring based on safety management

Author(s):  
S. V. Susarev ◽  
N. G. Gubanov ◽  
D. A. Melnikova ◽  
Y. V. Sarbitova ◽  
A. A. Odintsova
2018 ◽  
Vol 931 ◽  
pp. 1291-1294
Author(s):  
Valeriya A. Bobkina ◽  
N.G. Tsurkina

In order to monitor the current state of buildings and structures effectively the author proposes development and maintenance of constantly updated electronic databases of buildings and structures to manage the safety of buildings and structures operation, which provides an opportunity to receive information on technical condition of the facility in real time mode, which allows increasing the effectiveness of buildings’ owners, operating organisations, state supervisory and control bodies for safe operation as well as simulates emergency situations and predicts the behaviour of structures with regard to their repair and reconstruction.


2020 ◽  
Vol 9 (3) ◽  
pp. 25-30
Author(s):  
So Yeon Jeon ◽  
Jong Hwa Park ◽  
Sang Byung Youn ◽  
Young Soo Kim ◽  
Yong Sung Lee ◽  
...  

2006 ◽  
Author(s):  
Anton V. Avodnev ◽  
Vladimir M. Degtyarev
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
F. Buendía-Fuentes ◽  
M. A. Arnau-Vives ◽  
A. Arnau-Vives ◽  
Y. Jiménez-Jiménez ◽  
J. Rueda-Soriano ◽  
...  

Introduction. Artifactual variations in the ST segment may lead to confusion with acute coronary syndromes. Objective. To evaluate how the technical characteristics of the recording mode may distort the ST segment. Material and Method. We made a series of electrocardiograms using different filter configurations in 45 asymptomatic patients. A spectral analysis of the electrocardiograms was made by discrete Fourier transforms, and an accurate recomposition of the ECG signal was obtained from the addition of successive harmonics. Digital high-pass filters of 0.05 and 0.5 Hz were used, and the resulting shapes were compared with the originals. Results. In 42 patients (93%) clinically significant alterations in ST segment level were detected. These changes were only seen in “real time mode” with high-pass filter of 0.5 Hz. Conclusions. Interpretation of the ST segment in “real time mode” should only be carried out using high-pass filters of 0.05 Hz.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Dipti Chavan ◽  
Aniket Kamble ◽  
Aditya Khadsare ◽  
Vaibhav Chougule ◽  
Vaibhav Chougule

Electronics and communication is the most important field. In this paper, we can describe how much safety is in the Automobile industry. In this paper, we are using uno-Arduino. The different types of sensors facilities are also provided using key points. The different sensors are provided to check visitor count. In this system, we can monitor and control all the safety precautions their one IoT web platform. This helps in the proper utilization of drivers and helps in avoiding accidents. This paper can be implemented in any two-wheelers, heavily loaded trucks, small SUVs, compact cars. In our paper, the electronics machine/components will be automatically working with using of Arduino program. The proposed wireless sensor platform is an attempt to develop more safety devices that can be used in multiple areas such as homes, schools, and public utilities to reduce accidents. This Advanced Driver Assists system will provide real-time accident detections and monitoring usage information that helps in real-time by using GSM, GPS, and sensors.


2021 ◽  
Author(s):  
Nassima Brown ◽  
Adrian Brown ◽  
Abhijeet Degupta ◽  
Barry Quinn ◽  
Dustin Stringer ◽  
...  

Abstract As the oil and gas industry is facing tumultuous challenges, adoption of cutting-edge digital technologies has been accelerated to deliver safer, more efficient operations with less impact on the environment. While advanced AI and other digital technologies have been rapidly evolving in many fields in the industry, the HSE sector is playing catch-up. With the increasing complexity of risks and safety management processes, the effective application of data-driven technologies has become significantly harder, particularly for international organizations with varying levels of digital readiness across diverse global operations. Leaders are more cautious to implement solutions that are not fit-for purpose, due to concerns over inconsistencies in rolling out the program across international markets and the impact this may have on ongoing operations. This paper describes how the effective application of Artificial intelligence (AI) and Machine Learning (ML) technologies have been used to engineer a solution that fully digitizes and automates the end-to-end offshore behavior-based safety program across a global offshore fleet; optimizing a critical safety process used by many leading oil & gas organization to drive positive workplace safety culture. The complex safety program has been transformed into clear, efficient and automated workflow, with real-time analytics and live transparent dashboards which detail critical safety indicators in real time, aiding decision-making and improving operational performance. The novel behavior-based safety digital solution, referred to as 3C observation tool within Noble drilling, has been built to be fully aligned with the organization's safety management system requirements and procedures, using modern and agile tools and applications for fully scalability and easy deployment. It has been critical in sharpening the offshore safety observation program across global operations, resulting in a boost of the workforce engagement by 30%, and subsequently increasing safety awareness skill set attainment; improving overall offshore safety culture, all while reducing operating costs by up to 70% and cutting carbon footprint through the elimination of 15,000 manhours and half a million paper cards each year, when compared to previously used methods and workflows


2015 ◽  
Vol 08 (09) ◽  
pp. 643-652 ◽  
Author(s):  
Alexander Balakin ◽  
Ruslan Lisin ◽  
Alexey Smoluk ◽  
Yuri Protsenko

2016 ◽  
Author(s):  
Lucas Merckelbach

Abstract. Ocean gliders have become ubiquitous observation platforms in the ocean in recent years. They are also increasingly used in coastal environments. The coastal observatory system COSYNA has pioneered the use of gliders in the North Sea, a shallow tidally energetic shelf sea. For operational reasons, the gliders operated in the North Sea are programmed to resurface every 3–5 hours. The glider's deadreckoning algorithm yields depth averaged currents, averaged in time over each subsurface interval. Under operational conditions these averaged currents are a poor approximation of the instantaneous tidal current. In this work an algorithm is developed that estimates the instantaneous current (tidal and residual) from glider observations only. The algorithm uses a second-order Butterworth low-pass filter to estimate the residual current component, and a Kalman filter based on the linear shallow water equations for the tidal component. A comparison of data from a glider experiment with current data from an ADCP deployed nearby shows that the standard deviations for the east and north current components are better than 7 cm s−1 in near-real time mode, and improve to better than 5 cm s−1 in delayed mode, where the filters can be run forward and backward. In the near-real time mode the algorithm provides estimates of the currents that the glider is expected to encounter during its next few dives. Combined with a behavioural and dynamic model of the glider, this yields predicted trajectories, the information of which is incorporated in warning messages issued to ships by the (German) authorities. In delayed mode the algorithm produces useful estimates of the depth averaged currents, which can be used in (process-based) analyses in case no other source of measured current information is available.


Sign in / Sign up

Export Citation Format

Share Document