Polygonal Building Extraction by Frame Field Learning

Author(s):  
Nicolas Girard ◽  
Dmitriy Smirnov ◽  
Justin Solomon ◽  
Yuliya Tarabalka
MedienJournal ◽  
2018 ◽  
Vol 42 (1) ◽  
pp. 11-32 ◽  
Author(s):  
Franzisca Weder

The present study examines the relevance and framing of Corporate Social Responsibility in the mass media. Challenged by the ethically (over)loaded issue of responsibility, communication studies are searching for a new understanding of framing to investigate phenomena of new economic values like Corporate Social Responsibility in public discourses. For the quantitative content analysis put forward herein, frames are described as footprints of diverse positions, which determine a given public discourse. The longitudinal analysis of 26 German-speaking newspapers in Germany, Austria, and Switzerland between 1999 and 2008, a phase where CSR was aligned in business practices and CSR communication established in public discourses, aims at identifying CSR-frames as well as inquiring into the existence of a public discourse about CSR. The results show that there is no discourse on CSR itself. Instead of the assumed multiple issue-specific frames, CSR itself is (ab)used as a masterframe or “buzz word” in economic discourses.


2021 ◽  
Vol 13 (14) ◽  
pp. 2656
Author(s):  
Furong Shi ◽  
Tong Zhang

Deep-learning technologies, especially convolutional neural networks (CNNs), have achieved great success in building extraction from areal images. However, shape details are often lost during the down-sampling process, which results in discontinuous segmentation or inaccurate segmentation boundary. In order to compensate for the loss of shape information, two shape-related auxiliary tasks (i.e., boundary prediction and distance estimation) were jointly learned with building segmentation task in our proposed network. Meanwhile, two consistency constraint losses were designed based on the multi-task network to exploit the duality between the mask prediction and two shape-related information predictions. Specifically, an atrous spatial pyramid pooling (ASPP) module was appended to the top of the encoder of a U-shaped network to obtain multi-scale features. Based on the multi-scale features, one regression loss and two classification losses were used for predicting the distance-transform map, segmentation, and boundary. Two inter-task consistency-loss functions were constructed to ensure the consistency between distance maps and masks, and the consistency between masks and boundary maps. Experimental results on three public aerial image data sets showed that our method achieved superior performance over the recent state-of-the-art models.


2021 ◽  
Vol 13 (14) ◽  
pp. 2794
Author(s):  
Shuhao Ran ◽  
Xianjun Gao ◽  
Yuanwei Yang ◽  
Shaohua Li ◽  
Guangbin Zhang ◽  
...  

Deep learning approaches have been widely used in building automatic extraction tasks and have made great progress in recent years. However, the missing detection and wrong detection causing by spectrum confusion is still a great challenge. The existing fully convolutional networks (FCNs) cannot effectively distinguish whether the feature differences are from one building or the building and its adjacent non-building objects. In order to overcome the limitations, a building multi-feature fusion refined network (BMFR-Net) was presented in this paper to extract buildings accurately and completely. BMFR-Net is based on an encoding and decoding structure, mainly consisting of two parts: the continuous atrous convolution pyramid (CACP) module and the multiscale output fusion constraint (MOFC) structure. The CACP module is positioned at the end of the contracting path and it effectively minimizes the loss of effective information in multiscale feature extraction and fusion by using parallel continuous small-scale atrous convolution. To improve the ability to aggregate semantic information from the context, the MOFC structure performs predictive output at each stage of the expanding path and integrates the results into the network. Furthermore, the multilevel joint weighted loss function effectively updates parameters well away from the output layer, enhancing the learning capacity of the network for low-level abstract features. The experimental results demonstrate that the proposed BMFR-Net outperforms the other five state-of-the-art approaches in both visual interpretation and quantitative evaluation.


2021 ◽  
Vol 13 (4) ◽  
pp. 760
Author(s):  
Sheng He ◽  
Wanshou Jiang

Deep learning methods have been shown to significantly improve the performance of building extraction from optical remote sensing imagery. However, keeping the morphological characteristics, especially the boundaries, is still a challenge that requires further study. In this paper, we propose a novel fully convolutional network (FCN) for accurately extracting buildings, in which a boundary learning task is embedded to help maintain the boundaries of buildings. Specifically, in the training phase, our framework simultaneously learns the extraction of buildings and boundary detection and only outputs extraction results while testing. In addition, we introduce spatial variation fusion (SVF) to establish an association between the two tasks, thus coupling them and making them share the latent semantics and interact with each other. On the other hand, we utilize separable convolution with a larger kernel to enlarge the receptive fields while reducing the number of model parameters and adopt the convolutional block attention module (CBAM) to boost the network. The proposed framework was extensively evaluated on the WHU Building Dataset and the Inria Aerial Image Labeling Dataset. The experiments demonstrate that our method achieves state-of-the-art performance on building extraction. With the assistance of boundary learning, the boundary maintenance of buildings is ameliorated.


2021 ◽  
Vol 13 (13) ◽  
pp. 2524
Author(s):  
Ziyi Chen ◽  
Dilong Li ◽  
Wentao Fan ◽  
Haiyan Guan ◽  
Cheng Wang ◽  
...  

Deep learning models have brought great breakthroughs in building extraction from high-resolution optical remote-sensing images. Among recent research, the self-attention module has called up a storm in many fields, including building extraction. However, most current deep learning models loading with the self-attention module still lose sight of the reconstruction bias’s effectiveness. Through tipping the balance between the abilities of encoding and decoding, i.e., making the decoding network be much more complex than the encoding network, the semantic segmentation ability will be reinforced. To remedy the research weakness in combing self-attention and reconstruction-bias modules for building extraction, this paper presents a U-Net architecture that combines self-attention and reconstruction-bias modules. In the encoding part, a self-attention module is added to learn the attention weights of the inputs. Through the self-attention module, the network will pay more attention to positions where there may be salient regions. In the decoding part, multiple large convolutional up-sampling operations are used for increasing the reconstruction ability. We test our model on two open available datasets: the WHU and Massachusetts Building datasets. We achieve IoU scores of 89.39% and 73.49% for the WHU and Massachusetts Building datasets, respectively. Compared with several recently famous semantic segmentation methods and representative building extraction methods, our method’s results are satisfactory.


2010 ◽  
Vol 31 (6) ◽  
pp. 1441-1452 ◽  
Author(s):  
Yan Li ◽  
Lin Zhu ◽  
Peng Gong ◽  
Hideki Shimamura
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document