Harmonic distortion optimization of multilevel PWM inverter using genetic algorithms

Author(s):  
Jorge Luis Diaz Rodriguez ◽  
Luis David Pabon Fernandez ◽  
Aldo Pardo Garcia
Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 154
Author(s):  
Wei Yao ◽  
Jiamin Cui ◽  
Wenxi Yao

This paper presents a novel digital control scheme for the regulation of single-phase voltage source pulse width modulation (PWM) inverters used in AC power sources. The proposed scheme adopts two deadbeat controllers to regulate the inner current loop and the outer voltage loop of the PWM inverter. For the overhead of digital processing, the change of duty of PWM lags one carrier period behind the sampling signal, which is modeled as a first-order lag unit in a discrete domain. Based on this precise modeling, the deadbeat controllers make the inverter get a fast dynamic response, so that the inverter’s output voltage is obtained with a very low total harmonic distortion (THD), even when the load is fluctuating. The parameter sensitivity of the deadbeat control was analyzed, which shows that the proposed deadbeat control system can operate stably when the LC filter’s parameters vary within the range allowed. The experimental results of a 2kW inverter prototype show that the THD of the output voltage is less than 3% under resistive and rectifier loads, which verifies the feasibility of the proposed scheme. An additional advantage of the proposed scheme is that the parameter design of the controller can be fully programmed without the experience of a designer.


Author(s):  
Mohamed Ali Moussa ◽  
Bachir Belmadani ◽  
Ahmed Wahid Belarbi ◽  
Rachid Taleb

<p>This document is a contribution to improve the quality of electrical energy in the distribution network.<br />In this article we will present a method that allows us to clean up in a very considerable way the electrical network of both harmonics and inter harmonics provoked, basically by the ultrafast switches used when controlling a PWM inverter supplying a three-phase asynchronous motor. We notice that this method can be generalized for other loads creating inter-harmonics.<br />This proposed method was simulated using the MATLAB/SIMULINK software and had given remarkable results (there is a considerable reduction in total harmonic distortion (THD) of source current from 29.52% to 0.82%)</p>


Author(s):  
Saravanan M ◽  
Nandakumar R ◽  
Veerabalaji G

This paper presents a field programmable gate array(FPGA)-based control integrated  circuits(IC) for controlling the pulsewidth modulation (PWM) inverter used in power conditioning system for ac-voltage regulation. Space vector pulsewidth modulation(SVPWM) algorithm offers great flexibility to optimise switching waveform. Among them,double edge triggering can be implemented, It consumes less power compare to other PWM techniques. The SVPWM pulses thus generated through Xilinx is given as switching pulses to voltage source inverter(VSI) circuit to trigger the motor. The delay time of PWM output is programmable and SVPWM control IC is reprogrammable.It shows the advantage of lower total harmonic distortion(THD) without increasing the switching losses. Results  are provided along with simulation analysis in terms of THD,output fundamental voltage and voltage transfer ratio to verify the feasibility of operation. The SVPWM switching pattern has been achieved with a fundamental frequency of  50HZ.


In this paper, a PWM inverter is proposed for improvement of power quality i.e., reduction of total harmonic distortion (THD). The power quality problems reduce the lifetime and performance of equipments. The proposed system reduces the THD which is generated from the nonlinear loads. Because presence of harmonics leads to problems like overheating, failure of insulation etc. Here the simulation results of the proposed system is studied using MATLAB SIMULINK. Using the system, a lower THD is achieved which shows the effectiveness of the system.


Sign in / Sign up

Export Citation Format

Share Document