A Time-Optimal Velocity Planning Algorithm with Machining Precision Constraints for CNC System

Author(s):  
Jinqiang Zhao ◽  
Yunjiang Lou ◽  
Ran Shi ◽  
Zhihao Zhang
Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 943 ◽  
Author(s):  
Il Bae ◽  
Jaeyoung Moon ◽  
Jeongseok Seo

The convergence of mechanical, electrical, and advanced ICT technologies, driven by artificial intelligence and 5G vehicle-to-everything (5G-V2X) connectivity, will help to develop high-performance autonomous driving vehicles and services that are usable and convenient for self-driving passengers. Despite widespread research on self-driving, user acceptance remains an essential part of successful market penetration; this forms the motivation behind studies on human factors associated with autonomous shuttle services. We address this by providing a comfortable driving experience while not compromising safety. We focus on the accelerations and jerks of vehicles to reduce the risk of motion sickness and to improve the driving experience for passengers. Furthermore, this study proposes a time-optimal velocity planning method for guaranteeing comfort criteria when an explicit reference path is given. The overall controller and planning method were verified using real-time, software-in-the-loop (SIL) environments for a real-time vehicle dynamics simulation; the performance was then compared with a typical planning approach. The proposed optimized planning shows a relatively better performance and enables a comfortable passenger experience in a self-driving shuttle bus according to the recommended criteria.


2018 ◽  
Vol 70 (1) ◽  
pp. 61-90 ◽  
Author(s):  
Federico Cabassi ◽  
Luca Consolini ◽  
Marco Locatelli

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092004
Author(s):  
Yong-Lin Kuo ◽  
Chun-Chen Lin ◽  
Zheng-Ting Lin

This article presents a dual-optimization trajectory planning algorithm, which consists of the optimal path planning and the optimal motion profile planning for robot manipulators, where the path planning is based on parametric curves. In path planning, a virtual-knot interpolation is proposed for the paths required to pass through all control points, so the common curves, such as Bézier curves and B-splines, can be incorporated into it. Besides, an optimal B-spline is proposed to generate a smoother and shorter path, and this scheme is especially suitable for closed paths. In motion profile planning, a generalized formulation of time-optimal velocity profiles is proposed, which can be implemented to any types of motion profiles with equality and inequality constraints. Also, a multisegment cubic velocity profile is proposed by solving a multiobjective optimization problem. Furthermore, a case study of a dispensing robot is investigated through the proposed dual-optimization algorithm applied to numerical simulations and experimental work.


Author(s):  
Hrishikesh Dey ◽  
Rithika Ranadive ◽  
Abhishek Chaudhari

Path planning algorithm integrated with a velocity profile generation-based navigation system is one of the most important aspects of an autonomous driving system. In this paper, a real-time path planning solution to obtain a feasible and collision-free trajectory is proposed for navigating an autonomous car on a virtual highway. This is achieved by designing the navigation algorithm to incorporate a path planner for finding the optimal path, and a velocity planning algorithm for ensuring a safe and comfortable motion along the obtained path. The navigation algorithm was validated on the Unity 3D Highway-Simulated Environment for practical driving while maintaining velocity and acceleration constraints. The autonomous vehicle drives at the maximum specified velocity until interrupted by vehicular traffic, whereas then, the path planner, based on the various constraints provided by the simulator using µWebSockets, decides to either decelerate the vehicle or shift to a more secure lane. Subsequently, a splinebased trajectory generation for this path results in continuous and smooth trajectories. The velocity planner employs an analytical method based on trapezoidal velocity profile to generate velocities for the vehicle traveling along the precomputed path. To provide smooth control, an s-like trapezoidal profile is considered that uses a cubic spline for generating velocities for the ramp-up and ramp-down portions of the curve. The acceleration and velocity constraints, which are derived from road limitations and physical systems, are explicitly considered. Depending upon these constraints and higher module requirements (e.g., maintaining velocity, and stopping), an appropriate segment of the velocity profile is deployed. The motion profiles for all the use-cases are generated and verified graphically.


Author(s):  
Nicolas Michel ◽  
Zhaodan Kong ◽  
Xinfan Lin

Abstract Electric multirotor aircraft with vertical-take-off-and-landing capabilities are emerging as a revolutionary transportation mode. This paper studies optimal control of a multirotor unmanned aerial vehicle based on a system-level multiphysical model. The model considers aerodynamics of the rotor-propeller assembly, electro-mechanical dynamics of the motor and motor controller, and rigid-body dynamics of the vehicle, as control based on a system-level model incorporating all these dynamics and their coupling is missing in literature. A forward flight operation is considered for time-optimal and energy-optimal control, as well as battery voltages of 25 V and 21 V. Energy-optimal control is shown to reduce the energy required for the operation by 38.5% at 25 V, while reducing the battery voltage increases the minimum operation time by 19.8%. The energy-optimal cruise velocity is also examined, demonstrating that the optimal velocity predicted without considering rotor aerodynamics uses 35.2% more energy per meter travelled than is required at the true optimal velocity.


2020 ◽  
Vol 5 (4) ◽  
pp. 6185-6192
Author(s):  
Gabriel Hartmann ◽  
Zvi Shiller ◽  
Amos Azaria

Sign in / Sign up

Export Citation Format

Share Document