Determining neural network architecture using data mining techniques

Author(s):  
Mohamed Lafif Tej ◽  
Stefan Holban
2019 ◽  
Vol 7 ◽  
pp. 421-436 ◽  
Author(s):  
Ion Madrazo Azpiazu ◽  
Maria Soledad Pera

We present a multiattentive recurrent neural network architecture for automatic multilingual readability assessment. This architecture considers raw words as its main input, but internally captures text structure and informs its word attention process using other syntax- and morphology-related datapoints, known to be of great importance to readability. This is achieved by a multiattentive strategy that allows the neural network to focus on specific parts of a text for predicting its reading level. We conducted an exhaustive evaluation using data sets targeting multiple languages and prediction task types, to compare the proposed model with traditional, state-of-the-art, and other neural network strategies.


2021 ◽  
Vol 11 (12) ◽  
pp. 5470
Author(s):  
Yulia Shichkina ◽  
Yulia Irishina ◽  
Elizaveta Stanevich ◽  
Armando de Jesus Plasencia Salgueiro

This article describes an approach for collecting and pre-processing phone owner data, including their voice, in order to classify their condition using data mining methods. The most important research results presented in this article are the developed approaches for the processing of patient voices and the use of genetic algorithms to select the architecture of the neural network in the monitoring system for patients with Parkinson’s disease. The process used to pre-process a person’s voice is described in order to determine the main parameters that can be used in assessing a person’s condition. It is shown that the efficiency of using genetic algorithms for constructing neural networks depends on the composition of the data. As a result, the best result in the accuracy of assessing the patient’s condition can be obtained by a hybrid approach, where a part of the neural network architecture is selected analytically manually, while the other part is built automatically.


Author(s):  
Kristina Zhatkina ◽  
Oksana Kreider

This article describes the possibility of using data mining techniques. In order to join new carpet participants, it is necessary to understand that the system of interaction with them is public educational services. To implement digital educational platforms, it is proposed to create an agent that collects information about sites, and also selects and tests the architecture of the neural network to build an individual trajectory that is trained using the competency-based model.


Author(s):  
Pilla Srinivas, Et. al.

Nowadays, The health care commercial enterprise collects huge amounts of healthcare data which, unfortunately, are not “mined” to discover hidden information. Data mining plays a significant role in predicting diseases. The database report of medical patient is not more efficient, currently we made an Endeavour to detect the most widely spread disease in all over the world named Swine flu. Swine flu is a respiratory disease which has Numeral number of tests must be requisite from the patient for detecting a disease. Advanced data mining techniques gives us help to remedy this situation. In this work we describes about a prototype using data mining techniques, namely Naive Bayes Classifier. The Data mining is an emerging research trend which helps in finding accurate solutions in many fields. This paper highlights the various data mining technique and Convolution Neural Network used for predicting swine flu diseases.


Author(s):  
Omead I. Hussain

this study concentrates on Predicting Breast Cancer Survivability using data mining, and comparing between three main predictive modeling tools. Precisely, we used three popular data mining methods: two from machine learning (artificial neural network and decision trees) and one from statistics (logistic regression), and aimed to choose the best model through the efficiency of each model and with the most effective variables to these models and the most common important predictor. We defined the three main modeling aims and uses by demonstrating the purpose of the modeling. By using data mining, we can begin to characterize and describe trends and patterns that reside in data and information. The preprocessed data set contents were of 87 variables and the total of the records are 457,389; which became 93 variables and 90308 records for each variable, and these dataset were from the SEER database. We have achieved more than three data mining techniques and we have investigated all the data mining techniques and finally we find the best thing to do is to focus about these data mining techniques which are Artificial Neural Network, Decision Trees and Logistic Regression by using SAS Enterprise Miner 5.2 which is in our view of point is the suitable system to use according to the facilities and the results given to us. Several experiments have been conducted using these algorithms. The achieved prediction implementations are Comparison-based techniques. However, we have found out that the neural network has a much better performance than the other two techniques. Finally, we can say that the model we chose has the highest accuracy which specialists in the breast cancer field can use and depend on.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nasim Ansari ◽  
Hossein Vakilimofrad ◽  
Muharram Mansoorizadeh ◽  
Mohamad Reza Amiri

Purpose This study aims to analyze and predict a user’s behavior and create recommender systems in libraries and information centers, using data mining techniques. Design/methodology/approach The present study is an analytical survey study of cross-sectional type. The required data for this study were collected from the transactions of the users of libraries and information centers in Hamadan University of Medical Sciences. Using data mining techniques, the existing patterns were investigated, and users’ loan transactions were analyzed. Findings The findings showed that the association rules with the degree of confidence above 0.50 were able to determine user access patterns. Furthermore, among the decision tree algorithms, the C.05 predicted the loan period, referrals and users’ delay with the highest accuracy (i.e. 90.1). The other findings on feedforward neural network with R = 0.99 showed that the predicted results of neural network computation were very close to the real situation and had a proper estimation of user’s delay prediction. Finally, the clustering technique with the k-means algorithm predicted users’ behavior model regarding their loyalty. Practical implications The results of this study can lead to providing effective services and improve the quality of interaction between librarians and users and provide a good opportunity for managers to align supply of information resources with the real needs of users. Originality/value The results of the study showed that various data mining techniques are applicable with high efficiency and accuracy in analyzing library and information centers data and can be used to predict a user’s behavior and create recommendation systems.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document