scholarly journals Application of Genetic Algorithms for the Selection of Neural Network Architecture in the Monitoring System for Patients with Parkinson’s Disease

2021 ◽  
Vol 11 (12) ◽  
pp. 5470
Author(s):  
Yulia Shichkina ◽  
Yulia Irishina ◽  
Elizaveta Stanevich ◽  
Armando de Jesus Plasencia Salgueiro

This article describes an approach for collecting and pre-processing phone owner data, including their voice, in order to classify their condition using data mining methods. The most important research results presented in this article are the developed approaches for the processing of patient voices and the use of genetic algorithms to select the architecture of the neural network in the monitoring system for patients with Parkinson’s disease. The process used to pre-process a person’s voice is described in order to determine the main parameters that can be used in assessing a person’s condition. It is shown that the efficiency of using genetic algorithms for constructing neural networks depends on the composition of the data. As a result, the best result in the accuracy of assessing the patient’s condition can be obtained by a hybrid approach, where a part of the neural network architecture is selected analytically manually, while the other part is built automatically.

2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 12 (6) ◽  
pp. 1-21
Author(s):  
Jayant Gupta ◽  
Carl Molnar ◽  
Yiqun Xie ◽  
Joe Knight ◽  
Shashi Shekhar

Spatial variability is a prominent feature of various geographic phenomena such as climatic zones, USDA plant hardiness zones, and terrestrial habitat types (e.g., forest, grasslands, wetlands, and deserts). However, current deep learning methods follow a spatial-one-size-fits-all (OSFA) approach to train single deep neural network models that do not account for spatial variability. Quantification of spatial variability can be challenging due to the influence of many geophysical factors. In preliminary work, we proposed a spatial variability aware neural network (SVANN-I, formerly called SVANN ) approach where weights are a function of location but the neural network architecture is location independent. In this work, we explore a more flexible SVANN-E approach where neural network architecture varies across geographic locations. In addition, we provide a taxonomy of SVANN types and a physics inspired interpretation model. Experiments with aerial imagery based wetland mapping show that SVANN-I outperforms OSFA and SVANN-E performs the best of all.


Author(s):  
Raghuram Mandyam Annasamy ◽  
Katia Sycara

Deep reinforcement learning techniques have demonstrated superior performance in a wide variety of environments. As improvements in training algorithms continue at a brisk pace, theoretical or empirical studies on understanding what these networks seem to learn, are far behind. In this paper we propose an interpretable neural network architecture for Q-learning which provides a global explanation of the model’s behavior using key-value memories, attention and reconstructible embeddings. With a directed exploration strategy, our model can reach training rewards comparable to the state-of-the-art deep Q-learning models. However, results suggest that the features extracted by the neural network are extremely shallow and subsequent testing using out-of-sample examples shows that the agent can easily overfit to trajectories seen during training.


2019 ◽  
Vol 12 (S10) ◽  
Author(s):  
Jie Hao ◽  
Youngsoon Kim ◽  
Tejaswini Mallavarapu ◽  
Jung Hun Oh ◽  
Mingon Kang

Abstract Background Understanding the complex biological mechanisms of cancer patient survival using genomic and clinical data is vital, not only to develop new treatments for patients, but also to improve survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges to applying conventional survival analysis. Results We propose a novel biologically interpretable pathway-based sparse deep neural network, named Cox-PASNet, which integrates high-dimensional gene expression data and clinical data on a simple neural network architecture for survival analysis. Cox-PASNet is biologically interpretable where nodes in the neural network correspond to biological genes and pathways, while capturing the nonlinear and hierarchical effects of biological pathways associated with cancer patient survival. We also propose a heuristic optimization solution to train Cox-PASNet with HDLSS data. Cox-PASNet was intensively evaluated by comparing the predictive performance of current state-of-the-art methods on glioblastoma multiforme (GBM) and ovarian serous cystadenocarcinoma (OV) cancer. In the experiments, Cox-PASNet showed out-performance, compared to the benchmarking methods. Moreover, the neural network architecture of Cox-PASNet was biologically interpreted, and several significant prognostic factors of genes and biological pathways were identified. Conclusions Cox-PASNet models biological mechanisms in the neural network by incorporating biological pathway databases and sparse coding. The neural network of Cox-PASNet can identify nonlinear and hierarchical associations of genomic and clinical data to cancer patient survival. The open-source code of Cox-PASNet in PyTorch implemented for training, evaluation, and model interpretation is available at: https://github.com/DataX-JieHao/Cox-PASNet.


Author(s):  
Manish Kumar ◽  
Devendra P. Garg

Design of an efficient fuzzy logic controller involves the optimization of parameters of fuzzy sets and proper choice of rule base. There are several techniques reported in recent literature that use neural network architecture and genetic algorithms to learn and optimize a fuzzy logic controller. This paper presents methodologies to learn and optimize fuzzy logic controller parameters that use learning capabilities of neural network. Concepts of model predictive control (MPC) have been used to obtain optimal signal to train the neural network via backpropagation. The strategies developed have been applied to control an inverted pendulum and results have been compared for two different fuzzy logic controllers developed with the help of neural networks. The first neural network emulates a PD controller, while the second controller is developed based on MPC. The proposed approach can be applied to learn fuzzy logic controller parameter online via the use of dynamic backpropagation. The results show that the Neuro-Fuzzy approaches were able to learn rule base and identify membership function parameters accurately.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco J. Bravo Sanchez ◽  
Md Rahat Hossain ◽  
Nathan B. English ◽  
Steven T. Moore

AbstractThe use of autonomous recordings of animal sounds to detect species is a popular conservation tool, constantly improving in fidelity as audio hardware and software evolves. Current classification algorithms utilise sound features extracted from the recording rather than the sound itself, with varying degrees of success. Neural networks that learn directly from the raw sound waveforms have been implemented in human speech recognition but the requirements of detailed labelled data have limited their use in bioacoustics. Here we test SincNet, an efficient neural network architecture that learns from the raw waveform using sinc-based filters. Results using an off-the-shelf implementation of SincNet on a publicly available bird sound dataset (NIPS4Bplus) show that the neural network rapidly converged reaching accuracies of over 65% with limited data. Their performance is comparable with traditional methods after hyperparameter tuning but they are more efficient. Learning directly from the raw waveform allows the algorithm to select automatically those elements of the sound that are best suited for the task, bypassing the onerous task of selecting feature extraction techniques and reducing possible biases. We use publicly released code and datasets to encourage others to replicate our results and to apply SincNet to their own datasets; and we review possible enhancements in the hope that algorithms that learn from the raw waveform will become useful bioacoustic tools.


2016 ◽  
Vol 12 (2) ◽  
pp. 61-64 ◽  
Author(s):  
Vitaly M Tatyankin

An approach to the formation of an efficient pattern recognition algorithm. Under efficiency, understood as a zero error, resulting in the identification of the images on the test sample. As a test sample is considered an open database of images of handwritten digits MNIST.


Sign in / Sign up

Export Citation Format

Share Document