UPTPU: Improving Energy Efficiency of a Tensor Processing Unit through Underutilization Based Power-Gating

Author(s):  
Pramesh Pandey ◽  
Noel Daniel Gundi ◽  
Koushik Chakraborty ◽  
Sanghamitra Roy
2021 ◽  
Author(s):  
Na Li ◽  
Yuan Yuan Gao ◽  
Kui Xu

Abstract This paper studies a cell-free (CF) massive multi-input multi-output (MIMO) simultaneous wireless information and power transmission (SWIPT) system and proposes a user-centric (UC) access point (AP) selection method and a trade-off performance optimization scheme for spectral efficiency and energy efficiency. In this system, users have both energy harvesting and information transmission functions, and according to the difference between energy harvesting and information transmission, a flexible AP selection scheme is designed. This paper analyses the trade-off between energy efficiency and spectral efficiency, proposes an evaluation index that takes into account both energy efficiency and spectral efficiency, and jointly optimizes the AP selection scheme and the uplink (UL) and downlink (DL) time switching ratio to maximize the trade-off performance. Then, the non-convex problem is converted to a geometric planning (GP) problem to solve. The simulation results show that by implementing a suitable AP selection scheme and UL and DL time allocation, the information processing scheme on the AP side has a slight loss in spectral efficiency, but the energy efficiency is close to the performance of global processing on the central processing unit (CPU).


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Sung-Woong Jo ◽  
Jong-Moon Chung

Video streaming service is one of the most popular applications for mobile users. However, mobile video streaming services consume a lot of energy, resulting in a reduced battery life. This is a critical problem that results in a degraded user’s quality of experience (QoE). Therefore, in this paper, a joint optimization scheme that controls both the central processing unit (CPU) and wireless networking of the video streaming process for improved energy efficiency on mobile devices is proposed. For this purpose, the energy consumption of the network interface and CPU is analyzed, and based on the energy consumption profile a joint optimization problem is formulated to maximize the energy efficiency of the mobile device. The proposed algorithm adaptively adjusts the number of chunks to be downloaded and decoded in each packet. Simulation results show that the proposed algorithm can effectively improve the energy efficiency when compared with the existing algorithms.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1069
Author(s):  
Minseon Kang ◽  
Yongseok Lee ◽  
Moonju Park

Recently, the application of machine learning on embedded systems has drawn interest in both the research community and industry because embedded systems located at the edge can produce a faster response and reduce network load. However, software implementation of neural networks on Central Processing Units (CPUs) is considered infeasible in embedded systems due to limited power supply. To accelerate AI processing, the many-core Graphics Processing Unit (GPU) has been a preferred device to the CPU. However, its energy efficiency is not still considered to be good enough for embedded systems. Among other approaches for machine learning on embedded systems, neuromorphic processing chips are expected to be less power-consuming and overcome the memory bottleneck. In this work, we implemented a pedestrian image detection system on an embedded device using a commercially available neuromorphic chip, NM500, which is based on NeuroMem technology. The NM500 processing time and the power consumption were measured as the number of chips was increased from one to seven, and they were compared to those of a multicore CPU system and a GPU-accelerated embedded system. The results show that NM500 is more efficient in terms of energy required to process data for both learning and classification than the GPU-accelerated system or the multicore CPU system. Additionally, limits and possible improvement of the current NM500 are identified based on the experimental results.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1422 ◽  
Author(s):  
Yi Cen ◽  
Yigang Cen ◽  
Ke Wang ◽  
Jingcong Li

The fog radio access network (F-RAN) equipped with enhanced remote radio heads (eRRHs), which can pre-store some requested files in the edge cache and support mobile edge computing (MEC). To guarantee the quality-of-service (QoS) and energy efficiency of F-RAN, a proper content caching strategy is necessary to avoid coarse content storing locally in the cache or frequent fetching from a centralized baseband signal processing unit (BBU) pool via backhauls. In this paper we investigate the relationships among eRRH/terminal activities and content requesting in F-RANs, and propose an edge content caching strategy for eRRHs by mining out mobile network behavior information. Especially, to attain the inference for appropriate content caching, we establish a pre-mapping containing content preference information and geographical influence by an efficient non-uniformed accelerated matrix completion algorithm. The energy consumption analysis is given in order to discuss the energy saving properties of the proposed edge content caching strategy. Simulation results demonstrate our theoretical analysis on the inference validity of the pre-mapping construction method in static and dynamic cases, and show the energy efficiency achieved by the proposed edge content pre-caching strategy.


Sign in / Sign up

Export Citation Format

Share Document