Energy balance for weak formulation of diffraction by lossy anisotropic inhomogeneous gratings

Author(s):  
Leonid I. Goray
2014 ◽  
Vol 24 (04) ◽  
pp. 751-781 ◽  
Author(s):  
DIDIER JESSLÉ ◽  
ANTONÍN NOVOTNÝ ◽  
MILAN POKORNÝ

We consider a problem modeling the steady flow of a compressible heat conducting Newtonian fluid subject to the slip boundary condition for the velocity. Assuming the pressure law of the form p(ϱ, ϑ) ~ ϱγ + ϱϑ, we show (under additional assumptions on the heat conductivity and the viscosity) that for any γ > 1 there exists a variational entropy solution to our problem (i.e. the weak formulation of the total energy balance is replaced by the entropy inequality and the global total energy balance). Moreover, if [Formula: see text] (together with further restrictions on the heat conductivity), the solution is in fact a weak one. The results are obtained without any restriction on the size of the data.


1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


Author(s):  
B Otto ◽  
H Rochlitz ◽  
M Möhlig ◽  
L Burget ◽  
J Kampe ◽  
...  
Keyword(s):  

2005 ◽  
Vol 43 (10) ◽  
Author(s):  
B Otto ◽  
F Lippl ◽  
P Pfluger ◽  
J Spranger ◽  
U Cuntz ◽  
...  
Keyword(s):  

2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


2019 ◽  
Vol 139 (5) ◽  
pp. 302-308 ◽  
Author(s):  
Shinji Yamamoto ◽  
Soshi Iwata ◽  
Toru Iwao ◽  
Yoshiyasu Ehara

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1163-P ◽  
Author(s):  
SURYA PANICKER RAJEEV ◽  
CARL A. ROBERTS ◽  
DANIEL J. CUTHBERTSON ◽  
VICTORIA S. SPRUNG ◽  
EMILY BROWN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document