Secondary electron emission influence on electrical firmnes of low pressure discharge space

Author(s):  
N. Vereschagin ◽  
M. Sudakov
2005 ◽  
Vol 473-474 ◽  
pp. 293-296
Author(s):  
György Vida ◽  
Ildikó Beck ◽  
V. Katalin Josepovits ◽  
Miklós Győr

In the present paper the secondary emission and work function of W covered with different thickness Ba layers are compared. The secondary emission and work function were measured by Work Function Spectroscopy (WFS). It is clearly pointed out that the thin Ba coating causes the the enhancement of electron induced secondary electron emission. In high pressure discharge lamps high secondary emission and high thermionic current are required for reliable operating conditions, i.e., for reaching the nominal burning voltage and current etc. The results prove that the Ba spreading on the W surface from an alkali earth tungstate material is advantageous for lowering the work function and, simultaneously, for increasing the secondary emission yield.


2006 ◽  
Vol 56 (S2) ◽  
pp. B996-B1001 ◽  
Author(s):  
M. Radmilović-Radjenović ◽  
Z. Lj. Petrović ◽  
G. N. Malović ◽  
D. Marić ◽  
B. Radjenović

Author(s):  
R. D. Heidenreich

This program has been organized by the EMSA to commensurate the 50th anniversary of the experimental verification of the wave nature of the electron. Davisson and Germer in the U.S. and Thomson and Reid in Britian accomplished this at about the same time. Their findings were published in Nature in 1927 by mutual agreement since their independent efforts had led to the same conclusion at about the same time. In 1937 Davisson and Thomson shared the Nobel Prize in physics for demonstrating the wave nature of the electron deduced in 1924 by Louis de Broglie.The Davisson experiments (1921-1927) were concerned with the angular distribution of secondary electron emission from nickel surfaces produced by 150 volt primary electrons. The motivation was the effect of secondary emission on the characteristics of vacuum tubes but significant deviations from the results expected for a corpuscular electron led to a diffraction interpretation suggested by Elasser in 1925.


Author(s):  
T. Koshikawa ◽  
Y. Fujii ◽  
E. Sugata ◽  
F. Kanematsu

The Cu-Be alloys are widely used as the electron multiplier dynodes after the adequate activation process. But the structures and compositions of the elements on the activated surfaces were not studied clearly. The Cu-Be alloys are heated in the oxygen atmosphere in the usual activation techniques. The activation conditions, e.g. temperature and O2 pressure, affect strongly the secondary electron yield and life time of dynodes.In the present paper, the activated Cu-Be dynode surfaces at each condition are investigated with Scanning Auger Microanalyzer (SAM) (primary beam diameter: 3μmϕ) and SEM. The commercial Cu-Be(2%) alloys were polished with Cr2O3 powder, rinsed in the distilled water and set in the vacuum furnance.Two typical activation condition, i.e. activation temperature 730°C and 810°C in 5x10-3 Torr O2 pressure were chosen since the formation mechanism of the BeO film on the Cu-Be alloys was guessed to be very different at each temperature from the results of the secondary electron emission measurements.


Sign in / Sign up

Export Citation Format

Share Document