Experimental study of anode surface temperature after current zero for a range of current levels

Author(s):  
A. M. Chaly ◽  
I. N. Poluyanova ◽  
V. V. Yakovlev ◽  
K. K. Zabello ◽  
A. A. Logatchev ◽  
...  
2014 ◽  
Vol 42 (5) ◽  
pp. 1464-1473 ◽  
Author(s):  
Zhenxing Wang ◽  
Hui Ma ◽  
Guowei Kong ◽  
Zhiyuan Liu ◽  
Yingsan Geng ◽  
...  

2021 ◽  
Vol 141 (11) ◽  
pp. 712-717
Author(s):  
Akira Daibo ◽  
Yoshimitsu Niwa ◽  
Naoki Asari ◽  
Wataru Sakaguchi ◽  
Yo Sasaki ◽  
...  

2019 ◽  
Vol 72 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Liang Yu ◽  
Biao Ma ◽  
Man Chen ◽  
He Yan Li ◽  
Jikai Liu

Purpose This paper aims to study and compare the friction stability of wet paper-based clutches with regard to the radial grooves (RG) and waffle grooves (WG). Design/methodology/approach This paper presents an experimental study of a wet clutch concerning the effect of groove patterns on the friction torque and surface temperature. The friction stabilities of RG and WG are investigated with the applied pressure, rotating speed and automatic transmission fluid (ATF) temperature taken into consideration. Findings The friction torque and surface temperature of WG are larger than those of RG under the same operating condition. The friction torque difference between RG and WG grows with the increase of applied pressure and narrows with the increase of ATF temperature. Additionally, their temperature difference expands via increasing the rotating speed and ATF temperature or reducing the applied pressure; in this way, not only the variable coefficient difference between RG and WG can be narrowed, but also the friction stability of the clutch can be improved dramatically. Originality/value This paper explains the thermodynamic differences between RG and WG; moreover, it is verified experimentally that WG has a better friction stability than RG.


2018 ◽  
Vol 67 ◽  
pp. 01009
Author(s):  
Arrad Ghani Safitra ◽  
Fifi Hesty Sholihah ◽  
Erik Tridianto ◽  
Ikhsan Baihaqi ◽  
Ni Nyoman Ayu Indah T.

Photovoltaic (PV) modules require solar radiation to generate electricity. This study aims to determine the effect of water cooling PV modules on heat transfer, output power, and electrical efficiency of PV modules. The experiments carried out in this study were to vary the heights of flooded water (with and without cooling water replacement control) and cooling water flow. Variations in the height of flooded water are 0,5 cm, 1 cm, 2 cm, and 4 cm. While the flow rate variations are 2 L/min, 4 L/min, and 8 L/min. The flooded water replacement control will be active when the PV surface temperature reached 45°C. When the temperature dropped to 35°C, the cooler is disabled to let more photon to reach PV surface. The results showed that the lowest heat transfer occurred in the variation of 4 cm flooded water height without water replacement control, i.e. 28.53 Watt, with an average PV surface temperature of 32.92°C. The highest average electric efficiency occurred in the variation of 0,5 cm flooded water height with water replacement control, i.e. 13.12%. The use of cooling water replacement control is better due to being able to skip more photons reach PV surface with low PV temperature.


Sign in / Sign up

Export Citation Format

Share Document