Screening of Diabetic Retinopathy ¿ Automatic Segmentation of Optic Disc in Colour Fundus Images

Author(s):  
S. Lee ◽  
M. Rajeswari ◽  
D. Ramachandram ◽  
B. Shaharuddin
Author(s):  
Guangmin Sun ◽  
Zhongxiang Zhang ◽  
Junjie Zhang ◽  
Meilong Zhu ◽  
Xiao-rong Zhu ◽  
...  

AbstractAutomatic segmentation of optic disc (OD) and optic cup (OC) is an essential task for analysing colour fundus images. In clinical practice, accurate OD and OC segmentation assist ophthalmologists in diagnosing glaucoma. In this paper, we propose a unified convolutional neural network, named ResFPN-Net, which learns the boundary feature and the inner relation between OD and OC for automatic segmentation. The proposed ResFPN-Net is mainly composed of multi-scale feature extractor, multi-scale segmentation transition and attention pyramid architecture. The multi-scale feature extractor achieved the feature encoding of fundus images and captured the boundary representations. The multi-scale segmentation transition is employed to retain the features of different scales. Moreover, an attention pyramid architecture is proposed to learn rich representations and the mutual connection in the OD and OC. To verify the effectiveness of the proposed method, we conducted extensive experiments on two public datasets. On the Drishti-GS database, we achieved a Dice coefficient of 97.59%, 89.87%, the accuracy of 99.21%, 98.77%, and the Averaged Hausdorff distance of 0.099, 0.882 on the OD and OC segmentation, respectively. We achieved a Dice coefficient of 96.41%, 83.91%, the accuracy of 99.30%, 99.24%, and the Averaged Hausdorff distance of 0.166, 1.210 on the RIM-ONE database for OD and OC segmentation, respectively. Comprehensive results show that the proposed method outperforms other competitive OD and OC segmentation methods and appears more adaptable in cross-dataset scenarios. The introduced multi-scale loss function achieved significantly lower training loss and higher accuracy compared with other loss functions. Furthermore, the proposed method is further validated in OC to OD ratio calculation task and achieved the best MAE of 0.0499 and 0.0630 on the Drishti-GS and RIM-ONE datasets, respectively. Finally, we evaluated the effectiveness of the glaucoma screening on Drishti-GS and RIM-ONE datasets, achieving the AUC of 0.8947 and 0.7964. These results proved that the proposed ResFPN-Net is effective in analysing fundus images for glaucoma screening and can be applied in other relative biomedical image segmentation applications.


2015 ◽  
Vol 5 (1) ◽  
pp. 36
Author(s):  
Baha Sen ◽  
Kemal Akyol ◽  
Safak Bayir ◽  
Hilal Kaya

<p>Identifying the position of the optic disc on the retinal fundus image is a technique that is often used in medical diagnosis, treatment and monitoring processes. Determination of the intensity of the bright colors that belongs to the optic disc on a normal retinal image by the help of image processing algorithms is a fairly easy process. However, determining the optic disc on a retinal image including the diabetic retinopathy disease is a more difficult process. The reason for this difficulty is the existence of many regions that have the same light intensity in different parts of the retina. In this study, a new method for supplying the automatic determination of the optic disc in a recursive manner is proposed. By the help of OpenCV library, automatic determination process of the optic disc on the retinal fundus images including the diabetic retinopathy disease, has been implemented. Circular regions with maximum brightness values in the retinal images that were normalized and passed through the denoising process were determined and these regions were analyzed if they are optic disc or not. This process basically consists of two steps: In the first step, the possible optic disc candidate regions were determined recursively and in the second step, by the help of Gabor filter kernels, these regions were analyzed and it’s provided to decide if they are optic disc or not. This study is based on a dataset that has 89 images including diabetic retinopathy disease. Performance of this system is tested on these images and also on the images that the red, green, blue color channels and Contrast Limited Adaptive Histogram Equalization (CLAHE) retinas were obtained. Most accurate determination of the position of the optic disc is obtained with retinas, implemented process CLAHE, including the best success rate of 89.88%.</p><p> </p>Keywords: Optic disc, diabetic retinopathy, recursively, circular region, gabor filter kernels.


Author(s):  
Prashant Vishwakarma ◽  
Somen Jaiswal ◽  
Jay Chandarana ◽  
Abhishek Vyas

Diabetic Retinopathy and Glaucoma are optic diseases that involve optic disk identification, which is a crucial phase in the current diagnostic tools that can be computerized. When these diseases are identified early by any screening applications, measures may be taken to avoid blindness. Early indicators of the numerous illness such as Macula Edema, Diabetic Retinopathy and Glaucoma are the changes in the anatomy structures in the retina of the human eye which also has the inclusion of the retinal vasculature. Of these, the Optic Disc is the most crucial feature, as its visible factors are essential for the identification of glaucoma and other disease-related assessments called Diabetic Retinopathy. In this paper, we present methods to detect the likelihood of Diabetic Retinopathy being present from fundus images. This technique starts with pre-processing on the optic retinal image to concentrate on the main area of the disease that we need to identify. Afterwards we apply Image processing algorithms to detect the optic disk. Detecting the optic disc is vital because it is the origin of all the nerves and detecting the position and radius of optic disc can be used as the reference for approximating fovea i.e. a pit like area responsible for vision. Size and shape of optic disc is responsible for diagnosing the disease. Therefore, this paper addresses the analysis of different techniques to detect the optic disc.


2019 ◽  
Vol 8 (4) ◽  
pp. 12558-12563

Localizing, segmenting and eliminating the optic disc region of a fundus image is a prerequisite task in the automatic investigation of a number of retinal diseases such as Diabetic retinopathy, Glaucoma, Macular Edema, etc. Accurate detection of optic disc is a challenging task due to a number of reasons. Optic disc in most fundus images does not exhibit clear disc boundaries and there are number of blood vessels crossing it. An important task in automated retinal image analysis system is the detection and elimination of optic disc because the lesion regions in diabetic retinopathy closely resemble the color and texture of an optic disc. Hence, eliminating the optic disc region can improve the performance of diabetic retinopathy detection. The proposed work presents a novel method for optic disc segmentation which is not restricted by the location of the optic disc on the retina. The proposed algorithm localizes the position of the optic disc that is independent of its location and dynamically finds its center. The proposed method is tested on images from DRISHTI-GS, DIARETDB1, DRIONS-DB and DRIVE databases based on morphological operation and finding the largest connected component. The precision values of segmentation for digital fundus images from DRISHTI-GS, DIARETDB1, DRIONS-DB, and DRIVE databases are 0.98, 0.99, 0.98 and 0.99 respectively using the proposed method. The algorithm has yielded consistent high values of precision and recall indicating its robustness and efficiency.


2020 ◽  
Vol 14 ◽  
Author(s):  
Charu Bhardwaj ◽  
Shruti Jain ◽  
Meenakshi Sood

: Diabetic Retinopathy is the leading cause of vision impairment and its early stage diagnosis relies on regular monitoring and timely treatment for anomalies exhibiting subtle distinction among different severity grades. The existing Diabetic Retinopathy (DR) detection approaches are subjective, laborious and time consuming which can only be carried out by skilled professionals. All the patents related to DR detection and diagnoses applicable for our research problem were revised by the authors. The major limitation in classification of severities lies in poor discrimination between actual lesions, background noise and other anatomical structures. A robust and computationally efficient Two-Tier DR (2TDR) grading system is proposed in this paper to categorize various DR severities (mild, moderate and severe) present in retinal fundus images. In the proposed 2TDR grading system, input fundus image is subjected to background segmentation and the foreground fundus image is used for anomaly identification followed by GLCM feature extraction forming an image feature set. The novelty of our model lies in the exhaustive statistical analysis of extracted feature set to obtain optimal reduced image feature set employed further for classification. Classification outcomes are obtained for both extracted as well as reduced feature set to validate the significance of statistical analysis in severity classification and grading. For single tier classification stage, the proposed system achieves an overall accuracy of 100% by k- Nearest Neighbour (kNN) and Artificial Neural Network (ANN) classifier. In second tier classification stage an overall accuracy of 95.3% with kNN and 98.0% with ANN is achieved for all stages utilizing optimal reduced feature set. 2TDR system demonstrates overall improvement in classification performance by 2% and 6% for kNN and ANN respectively after feature set reduction, and also outperforms the accuracy obtained by other state of the art methods when applied to the MESSIDOR dataset. This application oriented work aids in accurate DR classification for effective diagnosis and timely treatment of severe retinal ailment.


Author(s):  
Nikos Tsiknakis ◽  
Dimitris Theodoropoulos ◽  
Georgios Manikis ◽  
Emmanouil Ktistakis ◽  
Ourania Boutsora ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document