Study of self-healing and self-assembly processes in polymer nanocomposites synthesized with carbon nanoparticles doped by magnetic nanoclasters

Author(s):  
Tsisana Gavasheli ◽  
Tatiana Gegechkori ◽  
Giorgi Ghvedashvili ◽  
Grigor Mamniashvili
2021 ◽  
Vol 118 (49) ◽  
pp. e2110839118
Author(s):  
Miha Papič ◽  
Urban Mur ◽  
Kottoli Poyil Zuhail ◽  
Miha Ravnik ◽  
Igor Muševič ◽  
...  

Liquid crystals (LCs) form an extremely rich range of self-assembled topological structures with artificially or naturally created topological defects. Some of the main applications of LCs are various optical and photonic devices, where compared to their solid-state counterparts, soft photonic systems are fundamentally different in terms of unique properties such as self-assembly, self-healing, large tunability, sensitivity to external stimuli, and biocompatibility. Here we show that complex tunable microlasers emitting structured light can be generated from self-assembled topological LC superstructures containing topological defects inserted into a thin Fabry–Pérot microcavity. The topology and geometry of the LC superstructure determine the structuring of the emitted light by providing complex three-dimensionally varying optical axis and order parameter singularities, also affecting the topology of the light polarization. The microlaser can be switched between modes by an electric field, and its wavelength can be tuned with temperature. The proposed soft matter microlaser approach opens directions in soft matter photonics research, where structured light with specifically tailored intensity and polarization fields could be designed and implemented.


2021 ◽  
Author(s):  
Wenqiang Chen ◽  
Chen Hou ◽  
Yang Wang ◽  
Linhui Fu ◽  
Sufeng Zhang ◽  
...  

Abstract Co3O4@Fe3O4/cellulose was synthesized by in-situ self-assembly strategy coating rod-like MOF-derived Fe3O4 with Co3O4 nanoparticles and blending with cellulose solution, further applied in the visible light-driven photo-Fenton system for PFOA degradation. In addition, Co3O4@Fe3O4/cellulose/Vitrimer was obtained to explore the application of self-healing property in photo-Fenton filed and the result turned out to be good self-healing capacity for small cracks. In comparison, Co3O4@Fe3O4/cellulose can degrade around 94.5% PFOA within 180 min in reaction system, which shows better degradation capacity than others catalyst. Moreover, Co3O4@Fe3O4/cellulose was reused by rinsing with ultra-pure water and the degradation capacity was still 80.4% after five cycles. In this system, the results of Electron paramagnetic resonance analysis (EPR) and scavenger experiment suggested that PFOA degradation was a co-dependent mechanism via photogenerated electrons, photogenerated holes (h+) and various radical species, rather than a single active constituent. The degradation pathway of PFOA also was proposed based on UHPLC-MS analysis.


2010 ◽  
Vol 20 (19) ◽  
pp. 3322-3329 ◽  
Author(s):  
Karl W. Putz ◽  
Owen C. Compton ◽  
Marc J. Palmeri ◽  
SonBinh T. Nguyen ◽  
L. Catherine Brinson

Author(s):  
M. Austin Creasy ◽  
Donald J. Leo

Biological systems demonstrate autonomous healing of damage and are an inspiration for developing self-healing materials. Our recent experimental study has demonstrated that a bilayer lipid membrane (BLM), also called a black lipid membrane, has the ability to self-heal after mechanical failure. These molecules have a unique property that they spontaneously self assembly into organized structures in an aqueous medium. The BLM forms an impervious barrier to ions and fluid between two volumes and strength of the barrier is dependent on the pressure and electrical field applied to the membrane. A BLM formed over an aperture on a silicon substrate is shown to self-heal for 5 pressurization failure cycles.


2017 ◽  
Vol 8 (2) ◽  
pp. 1350-1355 ◽  
Author(s):  
Alexander S. Groombridge ◽  
Aniello Palma ◽  
Richard M. Parker ◽  
Chris Abell ◽  
Oren A. Scherman

The successful self-assembly of a stimuli-responsive aqueous supramolecular hyperbranched polymer from small molecules and the macrocyclic host cucurbit[8]uril (CB[8]) is reported. This self-healing supramolecular network can act as a soft matter barrier at liquid–liquid interfaces.


2021 ◽  
Vol 581 ◽  
pp. 729-740
Author(s):  
James D. Tinkler ◽  
Alberto Scacchi ◽  
Harsh R. Kothari ◽  
Hanna Tulliver ◽  
Maialen Argaiz ◽  
...  

2019 ◽  
Vol 151 (15) ◽  
pp. 154904 ◽  
Author(s):  
Yunfei Du ◽  
Huijun Jiang ◽  
Zhonghuai Hou

2019 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Madhuparna Roy ◽  
Phong Tran ◽  
Tarik Dickens ◽  
Amanda Schrand

The demand for additively manufactured polymer composites with increased specific properties and functional microstructure has drastically increased over the past decade. The ability to manufacture complex designs that can maximize strength while reducing weight in an automated fashion has made 3D-printed composites a popular research target in the field of engineering. However, a significant amount of understanding and basic research is still necessary to decode the fundamental process mechanisms of combining enhanced functionality and additively manufactured composites. In this review, external field-assisted additive manufacturing techniques for polymer composites are discussed with respect to (1) self-assembly into complex microstructures, (2) control of fiber orientation for improved interlayer mechanical properties, and (3) incorporation of multi-functionalities such as electrical conductivity, self-healing, sensing, and other functional capabilities. A comparison between reinforcement shapes and the type of external field used to achieve mechanical property improvements in printed composites is addressed. Research has shown the use of such materials in the production of parts exhibiting high strength-to-weight ratio for use in aerospace and automotive fields, sensors for monitoring stress and conducting electricity, and the production of flexible batteries.


Langmuir ◽  
2020 ◽  
Vol 36 (26) ◽  
pp. 7427-7438
Author(s):  
Minghui Liu ◽  
Sai Li ◽  
Yue Fang ◽  
Zhudan Chen ◽  
Maha Alyas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document