scholarly journals Composite Reinforcement Architectures: A Review of Field-Assisted Additive Manufacturing for Polymers

2019 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Madhuparna Roy ◽  
Phong Tran ◽  
Tarik Dickens ◽  
Amanda Schrand

The demand for additively manufactured polymer composites with increased specific properties and functional microstructure has drastically increased over the past decade. The ability to manufacture complex designs that can maximize strength while reducing weight in an automated fashion has made 3D-printed composites a popular research target in the field of engineering. However, a significant amount of understanding and basic research is still necessary to decode the fundamental process mechanisms of combining enhanced functionality and additively manufactured composites. In this review, external field-assisted additive manufacturing techniques for polymer composites are discussed with respect to (1) self-assembly into complex microstructures, (2) control of fiber orientation for improved interlayer mechanical properties, and (3) incorporation of multi-functionalities such as electrical conductivity, self-healing, sensing, and other functional capabilities. A comparison between reinforcement shapes and the type of external field used to achieve mechanical property improvements in printed composites is addressed. Research has shown the use of such materials in the production of parts exhibiting high strength-to-weight ratio for use in aerospace and automotive fields, sensors for monitoring stress and conducting electricity, and the production of flexible batteries.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2136
Author(s):  
Sharizal Ahmad Sobri ◽  
Robert Heinemann ◽  
David Whitehead

Carbon fibre reinforced polymer composites (CFRPs) can be costly to manufacture, but they are typically used anywhere a high strength-to-weight ratio and a high steadiness (rigidity) are needed in many industrial applications, particularly in aerospace. Drilling composites with a laser tends to be a feasible method since one of the composite phases is often in the form of a polymer, and polymers in general have a very high absorption coefficient for infrared radiation. The feasibility of sequential laser–mechanical drilling for a thick CFRP is discussed in this article. A 1 kW fibre laser was chosen as a pre-drilling instrument (or initial stage), and mechanical drilling was the final step. The sequential drilling method dropped the overall thrust and torque by an average of 61%, which greatly increased the productivity and reduced the mechanical stress on the cutting tool while also increasing the lifespan of the bit. The sequential drilling (i.e., laser 8 mm and mechanical 8 mm) for both drill bits (i.e., 2- and 3-flute uncoated tungsten carbide) and the laser pre-drilling techniques has demonstrated the highest delamination factor (SFDSR) ratios. A new laser–mechanical sequence drilling technique is thus established, assessed, and tested when thick CFRP composites are drilled.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Mahesh Mallampati ◽  
Sreekanth Mandalapu ◽  
Govidarajulu C

The composite materials are replacing the traditional materials because oftheir superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio, low cost, lightweight, high specific modulus, renewability and biodegradability which are the most basic & common attractive features of composites that make them useful for industrial applications. The developments of new materials are on the anvil and are growing day by day. The efforts to produce economically attractive composite components have resulted in several innovative manufacturing techniques currently being used in the composites industry. Generally, composites consist of mainly two phases i.e., matrix and fiber. In this study, woven roving mats (E-glass fiber orientation (-45°/45°,0°/90°, - 45°/45°),UD450GSM)were cut in measured dimensions and a mixture of Epoxy Resin (EPOFINE-556, Density-1.15gm/cm3), Hardener (FINE HARDTM 951, Density- 0.94 gm/cm3) and Acetone [(CH3)2CO, M= 38.08 g/mol] was used to manufacture the glass fiber reinforced epoxy composite by hand lay-up method. Mechanical properties such as tensile strength, SEM analysis, hardness test, density tests are evaluated.


Author(s):  
VIJAY KUMAR MEENA ◽  
PARVEEN KALRA ◽  
RAVINDRA KUMAR SINHA

Additive manufacturing (AM) of titanium (Ti) alloys has always fascinated researchers owing to its high strength to weight ratio, biocompatibility, and anticorrosive properties, making Ti alloy an ideal candidate for medical applications. The aim of this paper is to optimize the AM parameters, such as Laser Power (LP), Laser Scan Speed (LSS), and Hatch Space (HS), using Analysis of Variance (ANOVA) and Grey Relational analysis (GRA) for mechanical and surface characteristics like hardness, surface roughness, and contact angle, of Ti6Al4V ELI considering medical implant applications. The input parameters are optimized to have optimum hardness, surface roughness and hydrophilicity required for medical implants.


Author(s):  
Brendan P. McNelly ◽  
Richard L. Hooks ◽  
William R. Setzler ◽  
Craig S. Hughes

Additive manufacturing (AM) allows for product development with light weight, fewer machining constraints, and reduced costs depending on the application. While AM is an emerging field, there is limited research on the use of AM for pressure vessels or implementation in high stress environments. Depending on the design approach and limitations of traditional material-removal fabrication techniques, AM parts can achieve high strength-to-weight ratios with reduced manufacturing efforts. Coupling AM with alternative metal and composite materials allows for unique designs that have high strength-to-weight ratios for pressure-based applications. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has conducted research on a number of these composite designs, focusing on the use of carbon fiber or metal plating with the AM materials. Before implementing AM in field tested prototypes, JHU/APL performed strength limitation tests on AM pressure vessels (PVs) in the laboratory to prove their effectiveness. PVs constructed with varying thicknesses and coating techniques were divided into three groups, each with a uniform wall thickness that provided a congruent surface area to withstand higher pressures. These PVs were then paired with one of three coating/plating technologies, forming a trade matrix of varying AM thicknesses and plating techniques. Once fabricated and plated, these test PVs were hydro-statically tested at increasing pressure levels. This pressure testing demonstrates that the use of AM to create PVs, when paired with specific plating techniques, can result in structures with significant strength capabilities at lighter than normal PV weights. Furthermore, JHU/APL has begun to test the AM PVs in a number of research projects. Such testing is desired because these unique parts can be easily manufactured in shapes and volumes that were previously unattainable through common manufacturing techniques. AM parts are now commonly used in air-frames; however, in higher pressure underwater scenarios AM’s capabilities are unproven. JHU/APL has begun to apply this new and emergent field to the effective design of AM PVs, which can play a significant role in the field of underwater vehicles and similar projects.


Nowadays polymer composites are emerged material which is used for extensive variety of applications because of their exclusive and beautiful characters. They have high durability, high strength-to-weight ratio and abrasion resistance. In this study the mechanical characteristics of coir and wood dust particle reinforced polyester composites using hand layup process were analyzed. The prepared composites were characterized using Scanning Electron Microscope and also the mechanical behaviors such as tensile strength and flexural strength were estimated using computerized testing machine


2021 ◽  
Vol 8 ◽  
Author(s):  
Xuewei Fang ◽  
Guopeng Chen ◽  
Jiannan Yang ◽  
Yang Xie ◽  
Ke Huang ◽  
...  

High-strength 7xxx series aluminum alloys are of great importance for the aerospace industries. However, this type of aluminum alloys has poor processability for most additive manufacturing techniques. In this paper, a newly designed Al–Zn–Mg alloy was used as a feeding wire to fabricate thin wall-shaped samples using the wire and arc additive manufacturing (WAAM) technique. These samples were fabricated based on the cold metal transfer (CMT) process with four different types of arc modes, that is, CMT, CMT-incorporated pulse (CMT + P), CMT-incorporated polarity (CMT + A), CMT-incorporated pulse and polarity (CMT + PA). The optical microscopy, x-ray computed tomography, and scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) were employed to characterize the microstructure and phase constitution. The results clearly reveal that the porosity varies with the arc modes, and the densest sample with porosity of 0.97% was obtained using the CMT + P mode. The mechanical properties of the fabricated samples are also dependent on the arc modes. The tensile strength and yield strength of the sample manufactured by the CMT + PA arc mode are the highest. In terms of anisotropy, the strength differences in horizontal and vertical direction of the samples made by CMT + PA, CMT + A, and CMT modes are all large, which is mainly ascribed to the pores distributed at the interlayer region.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1763
Author(s):  
Nthateng Nkhasi ◽  
Willie du Preez ◽  
Hertzog Bissett

Metal powders suitable for use in powder bed additive manufacturing processes should ideally be spherical, dense, chemically pure and of a specified particle size distribution. Ti6Al4V is commonly used in the aerospace, medical and automotive industries due to its high strength-to-weight ratio and excellent corrosion resistance properties. Interstitial impurities in titanium alloys have an impact upon mechanical properties, particularly oxygen, nitrogen, hydrogen and carbon. The plasma spheroidisation process can be used to spheroidise metal powder consisting of irregularly shaped particles. In this study, the plasma spheroidisation of metal powder was performed on Ti6Al4V powder consisting of irregularly shaped particles. The properties of the powder relevant for powder bed fusion that were determined included the particle size distribution, morphology, particle porosity and chemical composition. Conclusions were drawn regarding the viability of using this process to produce powder suitable for additive manufacturing.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402091695
Author(s):  
Asliah Seharing ◽  
Abdul Hadi Azman ◽  
Shahrum Abdullah

This review analyses the design, mechanical behaviors, manufacturability, and application of gradient lattice structures manufactured via metallic additive manufacturing technology. By varying the design parameters such as cell size, strut length, and strut diameter of the unit cells in lattice structures, a gradient property is obtained to achieve different levels of functionalities and optimize strength-to-weight ratio characteristics. Gradient lattice structures offer variable densification and porosities; and can combine more than one type of unit cells with different topologies which results in different performances in mechanical behavior layer-by-layer compared to non-gradient lattice structures. Additive manufacturing techniques are capable of manufacturing complex lightweight parts such as uniform and gradient lattice structures and hence offer design freedom for engineers. Despite these advantages, additive manufacturing has its own unique drawbacks in manufacturing lattice structures. The rules and strategies in overcoming the constraints are discussed and recommendations for future work were proposed.


Author(s):  
Surendar Ganesan ◽  
Balasubramanian Esakki ◽  
Lung-Jieh Yang ◽  
D Rajamani ◽  
M Silambarsan ◽  
...  

The development of a flapping wing microaerial vehicle mechanism with a high strength-to-weight ratio to withstand high flapping frequency is of significant interest in aerospace applications. The traditional manufacturing methods such as injection moulding and wire-cut electrical discharge machining suffer from high cost, labour intensiveness, and time-to-market. However, the present disruptive additive manufacturing technology is considered a viable replacement for manufacturing micromechanism components. Significantly to withstand high cyclic loads, metal-based high strength-to-weight ratio flapping wing microaerial vehicle components are the need of the hour. Hence, the present work focused on the fabrication of flapping wing microaerial vehicle micromechanism components using selective laser melting with AlSi10Mg alloy. The manufactured micromechanism components attained 99% of dimensional accuracy, and the total weight of the Evans mechanism assembly is 4 g. The scanning electron microscopy analysis revealed the laser melting surface characteristics of the Al alloy. The assembled mechanism is tested in static and dynamic environments to ensure structural rigidity. Aerodynamic forces are measured using a wind tunnel setup, and 7.5 lift and 1.2 N thrust forces are experienced that will be sufficient enough to carry a payload of 1 g camera on-board for surveillance missions. The study suggested that the metal additive manufacturing technology is a prominent solution to realize the micromechanism components effortlessly compared to conventional subtractive manufacturing.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 524
Author(s):  
Rachel Boillat ◽  
Sriram Praneeth Isanaka ◽  
Frank Liou

This paper reviews the status of nanoparticle technology as it relates to the additive manufacturing (AM) of aluminum-based alloys. A broad overview of common AM processes is given. Additive manufacturing is a promising field for the advancement of manufacturing due to its ability to yield near-net-shaped components that require minimal post-processing prior to end-use. AM also allows for the fabrication of prototypes as well as economical small batch production. Aluminum alloys processed via AM would be very beneficial to the manufacturing industry due to their high strength to weight ratio; however, many of the conventional alloy compositions have been shown to be incompatible with AM processing methods. As a result, many investigations have looked to methods to improve the processability of these alloys. This paper explores the use of nanostructures to enhance the processability of aluminum alloys. It is concluded that the addition of nanostructures is a promising route for modification of existing alloys and may be beneficial to other powder-based processes.


Sign in / Sign up

Export Citation Format

Share Document