An improved voltage balancing technique for a soft-switched high-gain converter with low voltage stress using duty ratio control for wind energy application

Author(s):  
Mehdi Abbasi ◽  
John Lam
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shanthi Thangavelu ◽  
Prabha Umapathy

A new topology for high step-up nonisolated DC-DC converter for solar PV applications is presented in this paper. The proposed high-voltage gain converter topology has many advantages like low-voltage stress on the switches, high gain with low duty ratio, and a continuous input current. The analytical waveforms of the proposed converter are presented in continuous and discontinuous modes of operation. Voltage stress analysis is conducted. The voltage gain and efficiency of the converter in presence of parasitic elements are also derived. Performance comparison of the proposed high-gain converter topology with the recently reported high-gain converter topologies is presented. Validation of theoretical analysis is done through the test results obtained from the simulation of the proposed converter. For the maximum duty ratio of 80%, the output voltage of 670 V is observed, and the voltage gain obtained is 14. Comparison of theoretical and simulation results is presented which validates the performance of the proposed converter.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3032 ◽  
Author(s):  
Hongchen Liu ◽  
Xi Su ◽  
Junxiong Wang

In this paper, two types of high step-up coupled inductor inverters based on qSBIs (quasi- switched boost inverters) are proposed. By applying the coupled inductor to the qSBIs, the voltage gain of the proposed inverter is regulated by turn ratio and duty ratio. Thus, a high voltage gain can be achieved without the circuits operating at the extreme duty cycle by choosing a suitable turn ratio of the coupled inductor. In addition, the proposed circuits have the characteristics of continuous input current and low voltage stress across the passive components. A boost unit can be added to the proposed inverters for further improvement of the voltage gain. In this paper, the working principle, steady state analysis, and the comparisons of the proposed inverter with other impedance-source inverters are described. A 200 W prototype was created and the experimental results confirm the correctness of the analysis in this paper.


Author(s):  
Mriganka Biswas ◽  
Somanath Majhi ◽  
Harshal Nemade

The paper presents a two-phase interleaved boost converter (IBC) providing higher step-up conversion ratio compared to the conventional IBC. The circuit consists of a crossly connected diode-capacitor cell which provides the extra boost up. The two identical capacitors of the cell are charged in parallel and discharged in series providing high voltage gain at considerably low duty ratio. Switching operations, ripple and average currents through inductors are analyzed in continuous conduction mode (CCM). Ripple in input current is also improved. The voltage stress across the semiconductor devices is less in the proposed converter. Also, boundary load condition is derived. Small-signal modeling is carried out and a control circuit is enabled in the voltage mode control framework. Power losses are analyzed and 96.53[Formula: see text] efficiency is achieved. Finally, the proposed converter is designed and implemented, and experimental results are provided.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Robert Stala ◽  
Maciej Chojowski ◽  
Zbigniew Waradzyn ◽  
Andrzej Mondzik ◽  
Szymon Folmer ◽  
...  

2013 ◽  
Vol 423-426 ◽  
pp. 2020-2025
Author(s):  
Li Ping Zhong ◽  
Qi Min Gu ◽  
Shui Ping Zhang

This paper proposed a kind of low voltage stress Z-source inverter topology. In the topology, the inductors of Z-source can be connected alternatively in parallel during the time of shoot-through and in series during the other time. Thus the network can obtain a high boost factor with a small shoot-through duty ratio and can decrease the voltage stress across the switch divices greatly. The principle of the topology was analyzed in detail and the simulation experiments was made as well. Simulation results verified the validity of the topology.


Author(s):  
P. Nithin and Dr. R. Rajeswari

In this paper, a novel high voltage gain DC-DC converter based on coupled inductor and voltage multiplier technique is proposed. The benefits of the proposed converter are ultra-high voltage gain, low voltage stress across the power switch and very low input current ripple by employing a low current ripple structure (LCR) at the input side. A low on state resistance (RDS(on)) of the power switch can be employed since the voltage stress is a maximum of 25% of the output voltage and the conduction losses of the switch is also reduced. Design of a 1.9kW, 48V at the low voltage side and 430V at the high voltage side is done and verified by simulation. Simulation results show an efficiency of over 93% when operating in continuous conduction mode (CCM).


Author(s):  
Abhinav Vinod Deshpande

In this research paper, a novel high step up dc-dc converter with a coupled inductor and voltage doubler circuits is proposed. The converter achieves a high step up voltage gain with an appropriate duty ratio and low voltage stress on the power switches. Also, the energy which is stored in the leakage inductor of the coupled inductor can be recycled to the output. The operating principles and the steady state analysis of the proposed converter are discussed in detail. Finally, a prototype circuit of the proposed converter is implemented in the laboratory in order to verify the performance of the proposed converter.


Sign in / Sign up

Export Citation Format

Share Document