A Frequency-Modulated Space Vector Pulse-Width Modulation for Ripple Current Control of Permanent-Magnet Motor Drives

Author(s):  
Yue Zhao ◽  
Tyler Adamson ◽  
Juan Carlos Balda ◽  
Yuzhi Zhang
2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


Author(s):  
S. Ravi ◽  
Vitaliy Mezhuyev ◽  
K. Iyswarya Annapoorani ◽  
P. Sukumar

<p>This proposal proposes a DC/DC Buck Boost converter which has been used as a smooth starter for a DC Permanent Magnet Motor. In the existing system the DC/DC Buck Converter is used which provide the output less than the input Signal. Using buck converter it is difficult to increase the value of the input signal. Hence DC/DC Buck- Boost Converter used from which it is possible to get both the increased and decreased output from the given input. Previously pulse width modulation signals with respective to motor voltage is used. However they produce variations in the voltage and current of the motor. The above problem is overcome by using DC/DC Power converter. The proposed system with reduction in size, reduced ripples and increase in speed makes the system to operate at both low and high power applications. The proposed system results in higher efficiency, reduces the ripple content and the stress. The results are validated through MATLAB/Simulink and real time implementation.</p>


Sign in / Sign up

Export Citation Format

Share Document