RPA and L-System Based Synthetic Data Generator for Cost-efficient Deep Learning Model Training

Author(s):  
Erick Fiestas S. ◽  
Oscar E. Ramos ◽  
Sixto Prado G.
Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3382 ◽  
Author(s):  
Hai Chien Pham ◽  
Quoc-Bao Ta ◽  
Jeong-Tae Kim ◽  
Duc-Duy Ho ◽  
Xuan-Linh Tran ◽  
...  

In this study, we investigate a novel idea of using synthetic images of bolts which are generated from a graphical model to train a deep learning model for loosened bolt detection. Firstly, a framework for bolt-loosening detection using image-based deep learning and computer graphics is proposed. Next, the feasibility of the proposed framework is demonstrated through the bolt-loosening monitoring of a lab-scaled bolted joint model. For practicality, the proposed idea is evaluated on the real-scale bolted connections of a historical truss bridge in Danang, Vietnam. The results show that the deep learning model trained by the synthesized images can achieve accurate bolt recognitions and looseness detections. The proposed methodology could help to reduce the time and cost associated with the collection of high-quality training data and further accelerate the applicability of vision-based deep learning models trained on synthetic data in practice.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1542
Author(s):  
Hao Wang ◽  
Suxing Lyu ◽  
Yaxin Ren

Accurate panicle identification is a key step in rice-field phenotyping. Deep learning methods based on high-spatial-resolution images provide a high-throughput and accurate solution of panicle segmentation. Panicle segmentation tasks require costly annotations to train an accurate and robust deep learning model. However, few public datasets are available for rice-panicle phenotyping. We present a semi-supervised deep learning model training process, which greatly assists the annotation and refinement of training datasets. The model learns the panicle features with limited annotations and localizes more positive samples in the datasets, without further interaction. After the dataset refinement, the number of annotations increased by 40.6%. In addition, we trained and tested modern deep learning models to show how the dataset is beneficial to both detection and segmentation tasks. Results of our comparison experiments can inspire others in dataset preparation and model selection.


2021 ◽  
Vol 310 ◽  
pp. 04002
Author(s):  
Nguyen Thanh Doan

Nowaday, expanding the application of deep learning technology is attracting attention of many researchers in the field of remote sensing. This paper presents methodology of using deep convolutional neural network model to determine the position of shoreline on Sentinel 2 satellite image. The methodology also provides techniques to reduce model retraining while ensuring the accuracy of the results. Methodological evaluation and analysis were conducted in the Mekong Delta region. The results from the study showed that interpolating the input images and calibrating the result thresholds improve accuracy and allow the trained deep learning model to externally test different images. The paper also evaluates the impact of the training dataset on the quality of the results obtained. Suggestions are also given for the number of files in the training dataset, as well as the information used for model training to solve the shoreline detection problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chuanlei Zhang ◽  
Minda Yao ◽  
Wei Chen ◽  
Shanwen Zhang ◽  
Dufeng Chen ◽  
...  

Gradient descent is the core and foundation of neural networks, and gradient descent optimization heuristics have greatly accelerated progress in deep learning. Although these methods are simple and effective, how they work remains unknown. Gradient descent optimization in deep learning has become a hot research topic. Some research efforts have tried to combine multiple methods to assist network training, but these methods seem to be more empirical, without theoretical guides. In this paper, a framework is proposed to illustrate the principle of combining different gradient descent optimization methods by analyzing several adaptive methods and other learning rate methods. Furthermore, inspired by the principle of warmup, CLR, and SGDR, the concept of multistage is introduced into the field of gradient descent optimization, and a gradient descent optimization strategy in deep learning model training based on multistage and method combination strategy is presented. The effectiveness of the proposed strategy is verified on the massive deep learning network training experiments.


2021 ◽  
Author(s):  
Katherine Cosburn ◽  
Mousumi Roy

<p>The ability to accurately and reliably obtain images of shallow subsurface anomalies within the Earth is important for hazard monitoring at many geologic structures, such as volcanic edifices. In recent years, the use of machine learning as a novel, data-driven approach to addressing complex inverse problems in the geosciences has gained increasing attention, particularly in the field of seismology. Here we present a physics-based, machine learning method to integrate disparate geophysical datasets for shallow subsurface imaging. We develop a methodology for imaging static density variations at a volcano with well-characterized topography by pairing synthetic cosmic-ray muon and gravity datasets. We use an artificial neural network (ANN) to interpret noisy synthetic datasets generated using theoretical knowledge of the forward kernels that relate these datasets to density. The deep learning model is trained with synthetic data from a suite of possible anomalous density structures and its accuracy is determined by comparing against the known forward calculation.<span> </span></p><p>In essence, we have converted a traditional inversion problem into a pattern recognition tool, where the ANN learns to predict discrete anomalous patterns within a target structure. Given a comprehensive suite of possible patterns and an appropriate amount of added noise to the synthetic data, the ANN can then interpolate the best-fit anomalous pattern given data it has never seen before, such as those obtained from field measurements. The power of this approach is its generality, and our methodology may be applied to a range of observables, such as seismic travel times and electrical conductivity. Our method relies on physics-based forward kernels that connect observations to physical parameters, such as density, temperature, composition, porosity, and saturation. The key benefit in using a physics-based approach as opposed to a data-driven one is the ability to get accurate predictions in cases where the amount of data may be too sparse or difficult to obtain to reliably train a neural network. We compare our approach to a traditional inversion, where appropriate, and highlight the (dis)advantages of the deep learning model.</p>


Sign in / Sign up

Export Citation Format

Share Document