scholarly journals A Novel Packaging and System-Integration Platform with Integrated Antennas for Scalable, Low-Cost and High-Performance 5G mmWave Systems

Author(s):  
Ivan Ndip ◽  
Kristoffer Andersson ◽  
Stefan Kosmider ◽  
Thi Huyen Le ◽  
Abhijeet Kanitkar ◽  
...  
Author(s):  
G. W. Lind ◽  
J. Protopapas

The selection and optimization of propulsion systems can be a costly and time-consuming process, especially when there are diverse performance requirements placed on the overall weapon system. Computerized procedures have been developed within the Grumman Propulsion Department to mechanize this capability and yet maintain the man-m-the-loop for full visibility during the evaluation of a candidate design concept. The system permits low cost, rapid, multidiscipline. interactive engine cycle selection and propulsion system integration to be effectively performed early in the preliminary design process of a high performance fighter aircraft. For example, the computer running time required to select a point design within a matrix of design variables and performance constraints has been reduced by 85 percent over previous techniques. This paper describes these propulsion evaluation procedures and cites a specific example of their application to the analysis of an advanced interceptor requirement.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000446-000501 ◽  
Author(s):  
Peter Ramm ◽  
Armin Klumpp ◽  
Josef Weber ◽  
Thomas Fritzsch ◽  
Maaike Taklo ◽  
...  

The European 3D technology platform that has been established represents the ensemble of 3D integration technologies which were developed within the e-CUBES project [http://www.ecubes.org]. It became evident that the fabrication of e-CUBES with their need for high-level miniaturization can only be realized by system integration technologies which use the third dimension. The main objective is to provide 3D integration technologies which on the one hand increase the performance sufficiently and at the same time allow for low cost fabrication in order to achieve products with a large market potential. The work was focussed on the requirements coming from application demonstrators. However, other requirements set by taking the visionary approach of developing strongly miniaturized micro/nano-systems were also a major task of the work. Research and technological development was necessary in the following fields in order to achieve the objectives. Seven corresponding technologies were successfully developed building a European platform on 3D Integration. This is considered to be essential output of the e-CUBES project. These are in the 3D integration categoriesVertical System Integration (3D-SOC): Fraunhofer IZM-M's Through-Si Via (TSV) Technology (ICV-SLID) and SINTEF's Hollow Via & Gold Stud Bump Bonding (HoViGo),Chip Stacking (3D-WLP): IMEC / Fraunhofer IZM's Thin-Chip-Integration Technology (TCI/UTCS) and CEA-LETI's Via Belt Technology, and3D Assembly (3D-SIP): 3D-PLUS' High Performance Package-in-Package (HiPPiP) and Wireless Die-on-Die (WDoD) Technologies, as well as Tyndall's Submicron Wire Anisotropic Conductive Film Technology (SW-ACF). Four optimized 3D integration technologies were successfully used in the development of three e-CUBES application demonstrators: Thin-Chip-Integration technology (TCI/UTCS) for Philips' Health & Fitness demonstrator, TSV technology ICV-SLID and HoViGo for Infineon's Automotive demonstrator (TPMS) and Package-in-Package technology HiPPiP for Thales' Aeronautic demonstrator. The 3D integration technologies which form part of the established e-CUBES platform will be presented including key characteristics, critical dimensions, electrical parameters and adaptability to new applications.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


Sign in / Sign up

Export Citation Format

Share Document