Work in progress: Multisensory stimulation for kids using Automatic Learning techniques based on an Embedded System

Author(s):  
John Guachun-Arias ◽  
Sandro Gonzalez-Gonzalez ◽  
Luis Serpa-Andrade
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1707
Author(s):  
Unai Hernandez-Jayo ◽  
Amaia Goñi

Like other sources of pollution, noise is considered to be one of the main concerns of citizens, due to its invisibility and the potential harm it can cause. Noise pollution could be considered as one of the biggest quality-of-life concerns for urban residents in big cities, mainly due to the high levels of noise to which they may be exposed. Such levels have proven effects on health, such as: sleep disruption, hypertension, heart disease, and hearing loss. In a scenario where the number of people concentrated in cities is increasing, tools are needed to quantify, monitor, characterize, and quantify noise levels. This paper presents the ZARATAMAP project, which combines machine learning techniques with a geo-sensing application so that the authorities can have as much information as possible, using a low-cost embedded and mobile node, that is easy to deploy, develop, and use.


2019 ◽  
Vol 8 (2) ◽  
pp. 5456-5462

This paper presents the design and development of an embedded system for ‘Carabao’ or Philippine mango sorting utilizing deep learning techniques. In particular, the proposed system initially takes as input a top view image of the mango, which is consequently rolled over to evaluate every sides. The input images were processed by Single Shot MultiBox Detector (SSD) MobileNet for mango detection and Multi-Task Learning Convolutional Neural Network (MTL-CNN) for classification/sorting ripeness and basic quality, running on an embedded computer, i.e. Raspberry Pi 3. Our dataset consisting of 2800 mango images derived from about 270 distinct mango fruits were annotated for multiple classification tasks, namely, basic quality (defective or good) and ripeness (green, semi-ripe, and ripe). The mango detection results achieved a total precision score of 0.92 and a mean average precision (mAP) of over 0.8 in the final checkpoint. The basic quality classification accuracy results were 0.98 and 0.92, respectively, for defective and good quality, while the ripeness classification for green, ripe, and semi-ripe were 1.0, 1.0, and 0.91, respectively. Overall, the results demonstrated the feasibility of our proposed embedded system for image-based Carabao mango sorting using deep learning techniques.


2006 ◽  
Vol 17 (03) ◽  
pp. 447-455 ◽  
Author(s):  
PABLO FELGAER ◽  
PAOLA BRITOS ◽  
RAMÓN GARCÍA-MARTÍNEZ

A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and flexible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain.


Sign in / Sign up

Export Citation Format

Share Document