Hydrogenic donor impurity states of quantum ring in the presence of an electric field

Author(s):  
Guangxin Wang ◽  
Xiuzhi Duan ◽  
Lingyan Ai
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Guangxin Wang ◽  
Xiuzhi Duan ◽  
Wei Chen

Using a variational method with two-parameter trial wave function and the effective mass approximation, the binding energy of a donor impurity in GaAs/AlxGa1−xAs cylindrical quantum ring (QR) subjected to an external field is calculated. It is shown that the donor impurity binding energy is highly dependent on the QR structure parameters (radial thickness and height), impurity position, and external electric field. The binding energy increases inchmeal as the QR parameters (radial thickness and height) decrease until a maximum value for a central impurity and then begins to drop quickly. The applied electric field can significantly modify the spread of electronic wave function in the QR and shift electronic wave function from the donor position and then leads to binding energy changes. In addition, results for the binding energies of a hydrogenic donor impurity as functions of the impurity position and applied electric field are also presented.


2013 ◽  
Vol 380-384 ◽  
pp. 4841-4844 ◽  
Author(s):  
Guang Xin Wang ◽  
Xiu Zhi Duan

The binding energy of a hydrogenic donor impurity in cylindrical GaAs quantum ring (QR) subjected to an external magnetic field is calculated within the effect mass approximation using variational method. The binding energy as a function of the QR size (the inner radius, the outer radius), the impurity position and the applied magnetic field is investigated. The results demonstrate that the ground state binding energy behaves as an decreasing function of the outer radius, and the magnetic field. Likewise, the binding energy is an increasing function of the inner radius. The binding energy firstly increases and then decreases with shifting the impurity ion from the internal surface of the QR to the external surface, indicating that there is a maximum.


2010 ◽  
Vol 10 ◽  
pp. 121-130 ◽  
Author(s):  
Hojjatollah K. Salehani ◽  
Mahdi Esmaeilzadeh ◽  
Khosrow Shakouri

In this paper, the electronic eigenstates and energy spectra of a two-dimensional system formed by three concentric, coupled, semiconductor quantum rings with a perpendicular magnetic field in the presence and the absence of a single ionized hydrogenic donor impurity are studied. It is found that the magnetic field localizes the electron wave function in the inner rings. The effects of hydrogenic donor on the electronic structure of concentric triple quantum rings are investigated in the both on- and off-center configurations. It is shown that as the donor moves away from the center of the system, the ground state energy decreases monotonically, the degeneracy is lifted and the gap between the energy levels increases. Also, the binding energy of donor impurity increases with increasing magnetic field.


Sign in / Sign up

Export Citation Format

Share Document