Economic feasibility analysis for a residential building in Tallinn with high electricity consumption. A case study with suitable energy storage for the Estonian climate

Author(s):  
E. Rebecka Rikkas
2017 ◽  
Vol 12 (3) ◽  
pp. 54-68 ◽  
Author(s):  
Fehmi Görkem Üçtuğ ◽  
Vedat Can Baltalı

This study has been undertaken to develop a consumer-oriented feasibility method for a hybrid photovoltaic (PV)-battery energy storage (BES) system by analyzing a real life house in Istanbul, Turkey, as a case study. The hourly electricity demand of the house was estimated by carrying out a detailed survey of the life style and daily habits of the household. No algorithm of any kind was used for the estimation of the energy demand with the exception of relating the lighting requirement to the daylight hours and the heating and cooling requirements to the seasonal weather changes. The developed method estimates the annual demand with an overall error of 8.68%. The net grid dependency and the feasibility of the PV-BES system was calculated for different combinations of PV and BES system sizes. It was found that when the maximum available roof area is used for PV installation and when the BES system size is increased, it is possible to achieve almost zero net grid dependency, and it is estimated that houses that are in regions with more abundant solar radiation and/or with lower annual electricity consumption, can reach zero net grid dependency. However, the feasibility indicator, which is the payback period, turned out to be no less than 25 years in any of the scenarios. The reasons for the infeasibility are the high prices of PV and BES systems as well as the current restriction in the regulations in Turkey, which prevents BES system owners from participating in unlicensed energy generation schemes and selling excess electricity back to the grid. In order to overcome this situation, regulations should be updated to allow BES system owners to benefit from feed-in-tariff schemes, thereby increasing the popularity of both PV and BES usage in Turkey.


Author(s):  
Mohamad Kharseh ◽  
Holger Wallbaum

The current work investigates how adding a battery of optimal capacity to a grid-connected photovoltaic (PV) system can improve its economic feasibility. Also, the effect of different parameters on the feasibility of the PV system was evaluated. The OBC was determined for different saving targets of the annual electricity consumption of the chosen building. For this aim, real electricity consumption data of a residential building in Landskrona, Sweden, was used as energy consumption profile. Solar World SW325XL, which is a monocrystalline solar panel, was selected as PV panels. The calculations were performed under the metrological and economic conditions of southern Sweden. Different working parameters (WP)were considered (prices of the battery, feed-in tariffs, and saving targets). The performed calculations show that the optimal battery capacity (OBC), in which the payback time (PBT) of the system is maximized, strongly depends on the WP. The proper selection of the battery can considerably increase the economic feasibility of the PV system in southern Sweden. However, in some cases, using battery can have a negative impact on the PBT of the system. The results show that the electricity price, the module price, the inverter price, and the inverter lifetime have the highest effect on the PBT.


2020 ◽  
Vol 10 (23) ◽  
pp. 8585
Author(s):  
Abdeslem Kadri ◽  
Farah Mohammadi ◽  
Mohamed Awadallah

Recently, the interest in utilizing energy storage systems (ESSs), particularly batteries, has increased. ESSs are employed for several enhancement tasks in power systems on both the operation and planning scales. On the operation side, ESSs play a main role in offering several ancillary services. In the context of planning, ESSs are used for asset upgrade deferral among other grid applications. This work employs a battery energy storage system (BESS) to minimize the electricity bill charges associated with global adjustment for large consumers in the jurisdiction of Ontario, Canada. An optimization formulation for sizing and scheduling the BESS, to minimize the utility charges and gain profits from other revenue streams, such as energy price arbitrage (EPA), was developed and implemented. The results show the economic feasibility of the developed algorithm to minimize the annual bills of real customers and gain profits. A sensitivity analysis was also carried out to show the potential of the proposed method in providing significant benefits and gains for customers.


2018 ◽  
Vol 10 (9) ◽  
pp. 3117 ◽  
Author(s):  
Federica Cucchiella ◽  
Idiano D’Adamo ◽  
Massimo Gastaldi ◽  
Vincenzo Stornelli

Renewable energy is a wide topic in environmental engineering and management science. Photovoltaic (PV) power has had great interest and growth in recent years. The energy produced by the PV system is intermittent and it depends on the weather conditions, presenting lower levels of production than other renewable resources (RESs). The economic feasibility of PV systems is linked typically to the share of self-consumption in a developed market and consequently, energy storage system (ESS) can be a solution to increase this share. This paper proposes an economic feasibility of residential lead-acid ESS combined with PV panels and the assumptions at which these systems become economically viable. The profitability analysis is conducted on the base of the Discounted Cash Flow (DCF) method and the index used is Net Present Value (NPV). The analysis evaluates several scenarios concerning a 3-kW plant located in a residential building in a PV developed market (Italy). It is determined by combinations of the following critical variables: levels of insolation, electricity purchase prices, electricity sales prices, investment costs of PV systems, specific tax deduction of PV systems, size of batteries, investment costs of ESS, lifetime of a battery, increases of self-consumption following the adoption of an ESS, and subsidies of ESS. Results show that the increase of the share of self-consumption is the main critical variable and consequently, the break-even point (BEP) analysis defines the case-studies in which the profitability is verified.


Sign in / Sign up

Export Citation Format

Share Document