Data-Driven Parameter Fault Classification for A DC–DC Buck Converter

Author(s):  
Yichuan Fu ◽  
Zhiwei Gao ◽  
Aihua Zhang
Procedia CIRP ◽  
2020 ◽  
Vol 93 ◽  
pp. 1055-1060
Author(s):  
Corbinian Nentwich ◽  
Sebastian Junker ◽  
Gunther Reinhart

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3144
Author(s):  
K. V. S. Bharath ◽  
Frede Blaabjerg ◽  
Ahteshamul Haque ◽  
Mohammed Ali Khan

This paper develops a model-based data driven algorithm for fault classification in proton exchange membrane fuel cells (PEMFCs). The proposed approach overcomes the drawbacks of voltage and current density assumptions in conventional model-based fault identification methods and data limitations in existing data driven approaches. This is achieved by developing a 3D model of fuel cells (FC) based on semi empirical model, analytical representation of electrochemical model, thermal model, and impedance model. The developed model is simulated for membrane drying and flooding faults in PEMFC and their effects are identified for the action of varying temperature, pressure, and relative humidity. The ohmic, concentration, activation and cell voltage losses for the simulated faults are observed and processed with wavelet transforms for feature extraction. Furthermore, the support vector machine learning algorithm is adapted to develop the proposed fault classification approach. The performance of the developed classifier is tested for an unknown data and calibrated through classification accuracy. The results showed 95.5% training efficiency and 98.6% testing efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8453
Author(s):  
Rafia Nishat Toma ◽  
Farzin Piltan ◽  
Jong-Myon Kim

Fault diagnosis and classification for machines are integral to condition monitoring in the industrial sector. However, in recent times, as sensor technology and artificial intelligence have developed, data-driven fault diagnosis and classification have been more widely investigated. The data-driven approach requires good-quality features to attain good fault classification accuracy, yet domain expertise and a fair amount of labeled data are important for better features. This paper proposes a deep auto-encoder (DAE) and convolutional neural network (CNN)-based bearing fault classification model using motor current signals of an induction motor (IM). Motor current signals can be easily and non-invasively collected from the motor. However, the current signal collected from industrial sources is highly contaminated with noise; feature calculation thus becomes very challenging. The DAE is utilized for estimating the nonlinear function of the system with the normal state data, and later, the residual signal is obtained. The subsequent CNN model then successfully classified the types of faults from the residual signals. Our proposed semi-supervised approach achieved very high classification accuracy (more than 99%). The inclusion of DAE was found to not only improve the accuracy significantly but also to be potentially useful when the amount of labeled data is small. The experimental outcomes are compared with some existing works on the same dataset, and the performance of this proposed combined approach is found to be comparable with them. In terms of the classification accuracy and other evaluation parameters, the overall method can be considered as an effective approach for bearing fault classification using the motor current signal.


Author(s):  
Igor Loboda ◽  
Sergey Yepifanov

In modern gas turbine health monitoring systems, the diagnostic algorithms based on gas path analysis may be considered as principal. They analyze gas path measured variables and are capable of identifying different faults and degradation mechanisms of gas turbine components (e.g. compressor, turbine, and combustor) as well as malfunctions of the measurement system itself. Gas path mathematical models are widely used in building fault classification required for diagnostics because faults rarely occur during field operation. In that case, model errors are transmitted to the model-based classification, which poses the problem of rendering the description of some classes more accurate using real data. This paper looks into the possibility of creating a mixed fault classification that incorporates both model-based and data-driven fault classes. Such a classification will combine a profound common diagnosis with a higher diagnostic accuracy for the data-driven classes. A gas turbine power plant for natural gas pumping has been chosen as a test case. Its real data with cycles of compressor fouling were used to form a data-driven class of the fouling. Preliminary qualitative analysis showed that these data allow creating a representative class of the fouling and that this class will be compatible with simulated fault classes. A diagnostic algorithm was created based on the proposed classification (real class of compressor fouling and simulated fault classes for other components) and artificial neural networks. The algorithm was subjected to statistical testing. As a result, probabilities of a correct diagnosis were determined. Different variations of the classification were considered and compared using these probabilities as criteria. The performed analysis has revealed no limitations for realizing a principle of the mixed classification in real monitoring systems.


Sign in / Sign up

Export Citation Format

Share Document