Estimation of resting state effective connectivity in epilepsy using direct-directed transfer function

Author(s):  
Biswajit Maharathi ◽  
Jeffrey A. Loeb ◽  
James Patton
Author(s):  
Ahmad Shalbaf ◽  
◽  
Arash Maghsoudi ◽  

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recognition systems rely on features of a single channel of EEG; however, the relationships among EEG channels in the form of effective brain connectivity analysis can contain valuable information. The aim of this paper is to identify a set of discriminative effective brain connectivity features from EEG signal and develop a hierarchical feature selection structure for classification of mental arithmetic and baseline tasks effectively. Methods: We estimated effective connectivity using Directed Transfer Function (DTF), direct Directed Transfer Function (dDTF) and Generalized Partial Directed Coherence (GPDC) methods. These measures determine the causal relation between different brain areas. To select most significant effective connectivity features, a hierarchical feature subset selection method is used. First Kruskal–Wallis test was performed and consequently, five feature selection algorithms namely Support Vector Machine ( SVM ) method based on Recursive Feature Elimination, Fisher score, mutual information, minimum Redundancy Maximum Relevance and concave minimization and SVM are used to select the best discriminative features. Finally, SVM method was used for classification. Results: Results show that the best EEG classification performance in 29 participants and 60 trials is obtained using GPDC and feature selection via concave minimization method in Beta2 (15−22Hz) frequency band with 89% accuracy. Conclusion: This new hierarchical automated system could be useful for discrimination of mental arithmetic and baseline tasks from EEG signal effectively.


IRBM ◽  
2021 ◽  
Author(s):  
Z. Wu ◽  
X. Chen ◽  
M. Gao ◽  
M. Hong ◽  
Z. He ◽  
...  

Author(s):  
Abdulhakim Al-Ezzi ◽  
Nidal Kamel ◽  
Ibrahima Faye ◽  
Esther Gunaseli

Several neuroimaging findings by using different modalities (e.g., fMRI and PET) have suggested that social anxiety disorder (SAD) is correlated with alterations in regional or network-level brain function. However, these modalities do not quantify the fast dynamic connectivity of causal information networks due to their poor temporal resolution. In this study, SAD-related changes in brain connections within the default mode network (DMN) was investigated using Electroencephalogram (EEG). Partial directed coherence (PDC) was used to assess the causal influences of DMN regions on each other and indicate the changes in the DMN effective network related to SAD severity. The EEG data were collected from 88 subjects (control, mild, moderate, severe) and used to estimate the effective connectivity between DMN regions at different frequency bands. Among the healthy control (HC) and the three considered levels of severity of SAD, the results indicated a higher level of causal interactions for the mild and moderate SAD groups than for the severe and HC groups. Between the control and the severe SAD groups, the results indicated a higher level of causal connections for the control throughout all the DMN regions. We found significant increases in the mean PDC in the delta and alpha bands between the SAD groups. Among the DMN regions, the precuneus exhibited a higher level of causal influence than other regions. Therefore, it was suggested to be a major source hub that contributes to the mental exploration and emotional content of SAD. In contrast to the severe group, the HC exhibited higher resting-state connectivity at the mesial prefrontal cortex (mPFC), providing evidence for mPFC dysfunction in the severe SAD group. Furthermore, the total Social Interaction Anxiety Scale (SIAS) was positively correlated with the mean values of the PDC of the severe SAD group and negatively correlated with those of the HC group. The reported results may facilitate greater comprehension of the underlying potential SAD neural biomarkers and can be used to characterize possible targets for further medication.


2020 ◽  
Author(s):  
Britni Crocker ◽  
Lauren Ostrowski ◽  
Ziv M. Williams ◽  
Darin D. Dougherty ◽  
Emad N. Eskandar ◽  
...  

AbstractBackgroundMeasuring connectivity in the human brain can involve innumerable approaches using both noninvasive (fMRI, EEG) and invasive (intracranial EEG or iEEG) recording modalities, including the use of external probing stimuli, such as direct electrical stimulation.Objective/HypothesisTo examine how different measures of connectivity correlate with one another, we compared ‘passive’ measures of connectivity during resting state conditions map to the more ‘active’ probing measures of connectivity with single pulse electrical stimulation (SPES).MethodsWe measured the network engagement and spread of the cortico-cortico evoked potential (CCEP) induced by SPES at 53 total sites across the brain, including cortical and subcortical regions, in patients with intractable epilepsy (N=11) who were undergoing intracranial recordings as a part of their clinical care for identifying seizure onset zones. We compared the CCEP network to functional, effective, and structural measures of connectivity during a resting state in each patient. Functional and effective connectivity measures included correlation or Granger causality measures applied to stereoEEG (sEEGs) recordings. Structural connectivity was derived from diffusion tensor imaging (DTI) acquired before intracranial electrode implant and monitoring (N=8).ResultsThe CCEP network was most similar to the resting state voltage correlation network in channels near to the stimulation location. In contrast, the distant CCEP network was most similar to the DTI network. Other connectivity measures were not as similar to the CCEP network.ConclusionsThese results demonstrate that different connectivity measures, including those derived from active stimulation-based probing, measure different, complementary aspects of regional interrelationships in the brain.


2020 ◽  
Vol 80 (4) ◽  
pp. 381-388
Author(s):  
Kianoosh Hosseini ◽  
Arash Zare-Sadeghi ◽  
Saeed Sadigh-Eteghad ◽  
Marjan Mirsalehi ◽  
Davood Khezerloo

2020 ◽  
Author(s):  
Jian Kong ◽  
Yiting Huang ◽  
Jiao Liu ◽  
Siyi Yu ◽  
Ming Cheng ◽  
...  

Abstract Background: This study aims to investigate the resting state functional connectivity (rsFC) changes of the hypothalamus in Fibromyalgia patients and the modulation effect of effective treatments. Methods: Fibromyalgia patients and matched healthy controls (HC’s) were recruited. Resting state fMRI data were collected from fibromyalgia patients before and after a 12-week Tai Chi intervention and once from HC’s. Results: Data analysis showed that fibromyalgia patients displayed significantly decreased medial hypothalamus (MH) rsFC with the thalamus and amygdala when compared to HC’s at baseline. After the intervention, fibromyalgia patients showed increased (normalized) MH rsFC in the thalamus and amygdala. Effective connectivity analysis showed disrupted MH and thalamus interaction in fibromyalgia, which nonetheless could be partially restored by Tai Chi. Conclusions: Elucidating the role of the diencephalon and limbic system in the pathophysiology and development of fibromyalgia may facilitate the development of new treatment methods for this prevalent disorder. Trial registration: Trial registration ClinicalTrials.gov Identifier: NCT02407665. Registered 3 April 2015 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02407665


Sign in / Sign up

Export Citation Format

Share Document