Muscle Activity Estimation at Drop Vertical Jump Landing Using Passive Muscle Mechanical Model

Author(s):  
Hinako Suzuki ◽  
Akihiko Murai ◽  
Yosuke Ikegami ◽  
Emiko Uchiyama ◽  
Ko Yamamoto ◽  
...  
2017 ◽  
Vol 49 (5S) ◽  
pp. 384
Author(s):  
Patrick Grabowski ◽  
Dianne Kilgas ◽  
Cassie Raduka ◽  
Lindsey Sheehan ◽  
Emily Sobocinski ◽  
...  

2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0015
Author(s):  
Cody R. Criss ◽  
Dustin R. Grooms ◽  
Jed A. Diekfuss ◽  
Manish Anand ◽  
Alexis B. Slutsky-Ganesh ◽  
...  

Background: Anterior cruciate ligament (ACL) injuries predominantly occur via non-contact mechanisms, secondary to motor coordination errors resulting in aberrant frontal plane knee loads that exceed the thresholds of ligament integrity. However, central nervous system processing underlying high injury-risk motor coordination errors remain unknown, limiting the optimization of current injury reduction strategies. Purpose: To evaluate the relationships between brain activity during motor tasks with injury-risk loading during a drop vertical jump. Methods: Thirty female high school soccer players (16.10 ± 0.87 years, 165.10 ± 4.64 cm, 63.43 ± 8.80 kg) were evaluated with 3D biomechanics during a standardized drop vertical jump from a 30 cm box and peak knee abduction moment was extracted as the injury-risk variable of interest. A neuroimaging session to capture neural activity (via blood-oxygen-level-dependent signal) was then completed which consisted of 4 blocks of 30 seconds of repeated bilateral leg press action paced to a metronome beat of 1.2 Hz with 30 seconds rest between blocks. Knee abduction moment was evaluated relative to neural activity to identify potential neural contributors to injury-risk. Results: There was a direct relationship between increased landing knee abduction moment and increased neural activation within regions corresponding to the lingual gyrus, intracalcarine cortex, posterior cingulate cortex, and precuneus (r2= 0.68, p corrected < .05, z max > 3.1; Table 1 & Figure 1). Conclusion: Elevated activity in regions that integrate sensory, spatial, and attentional information may contribute to elevated frontal plane knee loads during landing. Interestingly, a similar activation pattern related to high-risk landing mechanics has been found in those following injury, indicating that predisposing factors to injury may be accentuated by injury or that modern rehabilitation does not recover prospective neural control deficits. These data uncover a potentially novel brain marker that could guide the discovery of neural-therapeutic targets that reduce injury risk beyond current prevention methods. [Table: see text][Figure: see text]


2019 ◽  
Vol 28 (4) ◽  
Author(s):  
Brad W. Willis ◽  
Katie Hocker ◽  
Swithin Razu ◽  
Aaron D. Gray ◽  
Marjorie Skubic ◽  
...  

Context: Knee abduction angle (KAA), as measured by 3-dimensional marker-based motion capture systems during jump-landing tasks, has been correlated with an elevated risk of anterior cruciate ligament injury in females. Due to the high cost and inefficiency of KAA measurement with marker-based motion capture, surrogate 2-dimensional frontal plane measures have gained attention for injury risk screening. The knee-to-ankle separation ratio (KASR) and medial knee position (MKP) have been suggested as potential frontal plane surrogate measures to the KAA, but investigations into their relationship to the KAA during a bilateral drop vertical jump task are limited. Objective: To investigate the relationship between KASR and MKP to the KAA during initial contact of the bilateral drop vertical jump. Design: Descriptive. Setting: Biomechanics laboratory. Participants: A total of 18 healthy female participants (mean age: 24.1 [3.88] y, mass: 65.18 [10.34] kg, and height: 1.63 [0.06] m). Intervention: Participants completed 5 successful drop vertical jump trials measured by a Vicon marker-based motion capture system and 2 AMTI force plates. Main Outcome Measure: For each jump, KAA of the tibia relative to the femur was measured at initial contact along with the KASR and MKP calculated from planar joint center data. The coefficient of determination (r2) was used to examine the relationship between the KASR and MKP to KAA. Results: A strong linear relationship was observed between MKP and KAA (r2 = .71), as well as between KASR and KAA (r2 = .72). Conclusions: Two-dimensional frontal plane measures show strong relationships to the KAA during the bilateral drop vertical jump.


2019 ◽  
Vol 68 ◽  
pp. 346-351 ◽  
Author(s):  
Guilherme S. Nunes ◽  
Christian John Barton ◽  
Fábio Viadanna Serrão

Sign in / Sign up

Export Citation Format

Share Document