A simple excitation position detection method for sensorless SRM drive

Author(s):  
Joanna Bekiesch ◽  
Gunter Schroder ◽  
Tae-Hyoung Kim ◽  
Jin-Woo Ahn
Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3198 ◽  
Author(s):  
Angang Wei ◽  
Baohua Chang ◽  
Boce Xue ◽  
Guodong Peng ◽  
Dong Du ◽  
...  

Web-core sandwich panels are a typical lightweight structure utilized in a variety of fields, such as naval, aviation, aerospace, etc. Welding is considered as an effective process to join the face panel to the core panel from the face panel side. However, it is difficult to locate the joint position (i.e., the position of core panel) due to the shielding of the face panel. This paper studies a weld position detection method based on X-ray from the face panel side for aluminum web-core sandwich panels used in aviation and naval structures. First, an experimental system was designed for weld position detection, able to quickly acquire the X-ray intensity signal backscattered by the specimen. An effective signal processing method was developed to accurately extract the characteristic value of X-ray intensity signals representing the center of the joint. Secondly, an analytical model was established to calculate and optimize the detection parameters required for detection of the weld position of a given specimen by analyzing the relationship between the backscattered X-ray intensity signal detected by the detector and the parameters of the detection system and specimen during the detection process. Finally, several experiments were carried out on a 6061 aluminum alloy specimen with a thickness of 3 mm. The experimental results demonstrate that the maximum absolute error of the detection was 0.340 mm, which is sufficiently accurate for locating the position of the joint. This paper aims to provide the technical basis for the automatic tracking of weld joints from the face panel side, required for the high-reliability manufacturing of curved sandwich structures.


2014 ◽  
Vol 19 (3) ◽  
pp. 239-243
Author(s):  
Ki Ando ◽  
Hidekazu Uchida ◽  
Shamim Ahmed ◽  
Koichi Nishigaki ◽  
Osamu Takei ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 359
Author(s):  
Jiayi Fan ◽  
Insu Jung ◽  
Yongkeun Lee

In this paper, a sensorless position detection method of a two-phase switched reluctance motor (SRM) at standstill is proposed based on the voltage pulse injection method. Due to the torque dead zone and the lack of starting capability in the two-phase SRM, a rotor with a stepped structure is adopted to ensure continuous torque generation. The inductance characteristics of the asymmetric SRM are analyzed, and the region of the rotor position is categorized into linear regions and nonlinear regions with several key rotor positions and threshold values of self-inductance. A simple analytical model of the phase self-inductance profile of the asymmetric rotor SRM is proposed, which only requires a few linear equations, to replace the conventional look-up table. A pulse injection-based position estimation method is proposed based on the aforementioned analytical model. Short voltage pulses are injected into both phases at the same time to determine the position where the rotor is actually located at standstill. The proposed position detection method is simple and requires no extra circuitry. The simulation results are given and show the proposed estimation method can acquire a precise rotor position accurately at a standstill condition.


Sign in / Sign up

Export Citation Format

Share Document