The analysis of the measured data of wind turbines Vestas V90 - 2.0 MW

Author(s):  
Jan Unger ◽  
Petr Rozehnal ◽  
Petr Krejci
Keyword(s):  
Author(s):  
Yaozhi Lu ◽  
Fanzhou Zhao ◽  
Loic Salles ◽  
Mehdi Vahdati

The current development of wind turbines is moving toward larger and more flexible units, which can make them prone to fatigue damage induced by aeroelastic vibrations. The estimation of the total life of the composite components in a wind turbine requires the knowledge of both low and high cycle fatigue (LCF and HCF) data. The first aim of this study is to produce a validated numerical model, which can be used for aeroelastic analysis of wind turbines and is capable of estimating the LCF and HCF loads on the blade. The second aim of this work is to use the validated numerical model to assess the effects of extreme environmental conditions (such as high wind speeds) and rotor over-speed on low and high cycle fatigue. Numerical modelling of this project is carried out using the Computational Fluid Dynamics (CFD) & aeroelasticity code AU3D, which is written at Imperial College and developed over many years with the support from Rolls-Royce. This code has been validated extensively for unsteady aerodynamic and aeroelastic analysis of high-speed flows in gas turbines, yet, has not been used for low-speed flows around wind turbine blades. Therefore, in the first place the capability of this code for predicting steady and unsteady flows over wind turbines is studied. The test case used for this purpose is the Phase VI wind turbine from the National Renewable Energy Laboratory (NREL), which has extensive steady, unsteady and mechanical measured data. From the aerodynamic viewpoint of this study, AU3D results correlated well with the measured data for both steady and unsteady flow variables, which indicated that the code is capable of calculating the correct flow at low speeds for wind turbines. The aeroelastic results showed that increase in crosswind and shaft speed would result in an increase of unsteady loading on the blade which could decrease the lifespan of a wind turbine due to HCF. Shaft overspeed leads to significant increase in steady loading which affects the LCF behaviour. Moreover, the introduction of crosswind could result in significant dynamic vibration due to forced response at resonance.


2011 ◽  
Vol 5 (1) ◽  
pp. 48 ◽  
Author(s):  
V. Peesapati ◽  
I. Cotton ◽  
T. Sorensen ◽  
T. Krogh ◽  
N. Kokkinos

2019 ◽  
Vol 2 (1) ◽  
pp. 8-16 ◽  
Author(s):  
P. A. Khlyupin ◽  
G. N. Ispulaeva

Introduction: The co-authors provide an overview of the main types of wind turbines and power generators installed into wind energy devices, as well as advanced technological solutions. The co-authors have identified the principal strengths and weaknesses of existing wind power generators, if applied as alternative energy sources. The co-authors have proven the need to develop an algorithm for the selection of a wind generator-based autonomous power supply system in the course of designing windmill farms in Russia. Methods: The co-authors have analyzed several types of wind turbines and power generators. Results and discussions: The algorithm for the selection of a wind generator-based autonomous power supply system is presented as a first approximation. Conclusion: The emerging algorithm enables designers to develop an effective wind generator-based autonomous power supply system.


2014 ◽  
Vol 134 (8) ◽  
pp. 1096-1103 ◽  
Author(s):  
Sho Tsujimoto ◽  
Ségolène Dessort ◽  
Naoyuki Hara ◽  
Keiji Konishi

2016 ◽  
Vol 136 (6) ◽  
pp. 759-766 ◽  
Author(s):  
Yu Fujita ◽  
Hiroshi Kobayashi ◽  
Takanori Kodera ◽  
Mutsumi Aoki ◽  
Hiroto Suzuki ◽  
...  

2011 ◽  
Vol 131 (3) ◽  
pp. 136-139
Author(s):  
Yusuke ONDA ◽  
Masaki IMANAKA ◽  
Toru YOSHIHARA ◽  
Jumpei BABA
Keyword(s):  

2010 ◽  
Vol 130 (11) ◽  
pp. 1002-1009 ◽  
Author(s):  
Jorge Morel ◽  
Hassan Bevrani ◽  
Teruhiko Ishii ◽  
Takashi Hiyama

Sign in / Sign up

Export Citation Format

Share Document