scholarly journals A comprehensive investigation on the short circuit performance of MW-level IGBT power modules

Author(s):  
Rui Wu ◽  
Paula Diaz Reigosa ◽  
Francesco Iannuzzo ◽  
Huai Wang ◽  
Frede Blaabjerg
2019 ◽  
Vol 963 ◽  
pp. 797-800 ◽  
Author(s):  
Ajit Kanale ◽  
Ki Jeong Han ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya

The high-temperature switching performance of a 1.2kV SiC JBSFET is compared with a 1.2kV SiC MOSFET using a clamped inductive load switching circuit representing typical H-bridge inverters. The switching losses of the SiC MOSFET are also evaluated with a SiC JBS Diode connected antiparallel to it. Measurements are made with different high-side and low-side device options across a range of case temperatures. The JBSFET is observed to display a reduction in peak turn-on current – up to 18.9% at 150°C and a significantly lesser turn-on switching loss – up to 46.6% at 150°C, compared to the SiC MOSFET.


2021 ◽  
Author(s):  
V. Sreeram ◽  
M. Rajkumar ◽  
S. S. Reddy ◽  
T. Gurudev ◽  
Maroti

2018 ◽  
Vol 88-90 ◽  
pp. 661-665 ◽  
Author(s):  
H. Du ◽  
P.D. Reigosa ◽  
F. Iannuzzo ◽  
L. Ceccarelli
Keyword(s):  

2020 ◽  
Vol 1004 ◽  
pp. 783-788
Author(s):  
Ki Jeong Han ◽  
Ajit Kanale ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya

The electrical characteristics of the 1.2-kV rated 4H-SiC accumulation-channel split-gate octagonal cell MOSFET (SG-OCTFET) are experimentally compared with linear, square, hexagonal, octagonal, and compact-octagonal cell topologies. The specific on-resistance of the SG-OCTFET is 52% larger than the conventional linear cell topology. However, the SG-OCTFET has: (i) high-frequency figure-of-merit HFFOM[Ron×Cgd] 9.4×, 6.1×, 2.6×, 2.0×, and 1.8× superior to the square, hex, linear, octagonal, and compact-octagonal cells; (ii) fastest switching performance among all cell topologies, with 26% smaller switching energy loss than the conventional linear cell topology; and (iii) short circuit capability 1.5× longer than the conventional linear cell topology. The SG-OCTFET device is therefore an optimum candidate for high frequency applications of SiC MOSFETs.


Sign in / Sign up

Export Citation Format

Share Document