A Novel Approach to Precisely Calculate Lumped Parameters for Transmission Lines with Sag Using the M-Model Equivalent Circuit

Author(s):  
Ali R. Al-Roomi ◽  
Mohamed E. El-Hawary
2017 ◽  
Vol 38 (6) ◽  
pp. 065004
Author(s):  
Hansheng Wang ◽  
Weiliang He ◽  
Minghui Zhang ◽  
Lu Tanh

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chia Ho Wu ◽  
Linfang Shen ◽  
Hang Zhang ◽  
Jinhua Yan ◽  
Da Jun Hou ◽  
...  

AbstractIn this paper, the characteristics of a class of transmission lines which support spoof surface plasmon polaritons are investigated both numerically and experimentally. In order to provide the characteristic impedance of spoof surface plasmon polaritons for PCB designers, the equivalent circuit parameters of the microstrip line periodically structured on subwavelength scale are extracted with the numerical method. It is found that the equivalent circuit parameters significantly vary with frequency when the subwavelength periodic structure is introduced into the edge of the conventional microstrip line. The results of time-domain measurements show that spoof surface plasmon polaritons have remarkable advantage over conventional microstrip lines and can be directly used in actual high-speed circuits, which is helpful for eliminating the doubts whether the metamaterials can be directly used in actual circuits.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2126 ◽  
Author(s):  
John Morales ◽  
Eduardo Muñoz ◽  
Eduardo Orduña ◽  
Gina Idarraga-Ospina

Based on the Institute of Electrical and Electronics Engineers (IEEE) Standard C37.104-2012 Power Systems Relaying Committee report, topics related to auto-reclosing in transmission lines have been considered as an imperative benefit for electric power systems. An important issue in reclosing, when performed correctly, is identifying the fault type, i.e., permanent or temporary, which keeps the faulted transmission line in service as long as possible. In this paper, a multivariable analysis was used to classify signals as permanent and temporary faults. Thus, by using a simple convolution process among the mother functions called eigenvectors and the fault signals from a single end, a dimensionality reduction was determined. In this manner, the feature classifier based on the support vector machine was used for acceptably classifying fault types. The algorithm was tested in different fault scenarios that considered several distances along the transmission line and representation of first and second arcs simulated in the alternative transients program ATP software. Therefore, the main contribution of the analysis performed in this paper is to propose a novel algorithm to discriminate permanent and temporary faults based on the behavior of the faulted phase voltage after single-phase opening of the circuit breakers. Several simulations let the authors conclude that the proposed algorithm is effective and reliable.


2015 ◽  
Vol 15 (10) ◽  
pp. 7573-7577 ◽  
Author(s):  
Gihyun Lee ◽  
Sohee Kim ◽  
Sungbo Cho

Life-time and functionality of planar microelectrode-based devices are determined by not only the corrosion-resistance of the electrode, but also the durability of the insulation layer coated on the transmission lines. Degradation of the insulating layer exposed to a humid environment or solution may cause leakage current or signal loss, and a decrease in measurement sensitivity. In this study, degradation of SU-8, an epoxy-based negative photoresist and insulating material, patterned on Au interdigitated microelectrode (IDE) for long-term (>30 days) immersion in an electrolyte at 37 °C was investigated by electrical impedance spectroscopy and theoretical equivalent circuit modeling. From the experiment and simulation results, it was found that the degradation level of the insulating layer of the IDE electrode can be characterized by monitoring the resistance of the insulating layer among the circuit parameters of the designed equivalent circuit modeling.


Sign in / Sign up

Export Citation Format

Share Document