scholarly journals Experimental Study on Mechanical Property of Stiffening-ribbed-hollowpipe Reinforced Concrete Girderless Floor with Four Clamped Edges Supported

2013 ◽  
Vol 7 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Weijun Yang ◽  
Yongda Yang ◽  
Jihua Yin ◽  
Yushuang Ni

In order to study the basic mechanical property of cast-in-place stiffening-ribbed-hollow-pipe reinforced concrete girderless floor, and similarities and differences of the structural performance compared with traditional floor, we carried out the destructive stage loading test on the short-term load test of floor model with four clamped edges supported in large scale, and conducted the long-term static load test. Also, the thesis conducted finite element analysis in virtue of ANSYS software for solid slab floor, stiffening-ribbed-hollow-pipe floor and tubular floor. The experiment indicates that the developing process of cracks, distribution and failure mode in stiffening-ribbed-hollow-pipe floor are similar to that of solid girderless floor, and that this kind of floor has higher bearing capacity and better plastic deformation capacity. The finite element analysis manifests that, compared with solid slab floor, the deadweight of stiffening-ribbed-hollow-pipe floor decreases on greater level while deformation increases little, and that compared with tubular floor, this floor has higher rigidity. So stiffening-ribbed-hollow-pipe reinforced concrete girderless floor is particularly suitable for long-span and large-bay building structure.

2013 ◽  
Vol 7 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Weijun Yang ◽  
Yongda Yang ◽  
Bing Han ◽  
Pengxiao Jiang

In order to study the basic mechanical property of the new honeycombed-core girderless floor in cast-in-place reinforced concrete, and similarities and differences of the structural performance compared with traditional floor, we carried out the destructive stage loading test on large-scale corner columns supported reinforced concrete honeycombed-core girderless floor. And the thesis conducted finite element analysis in virtue of ANSYS software for solid slab floor, rib floor and honeycombed-core floor. The experiment indicates that honeycombed-core modules cement well with concrete around and participate in the load-carrying; the developing process, distribution and failure mode of crevice in honeycombed-core floor are similar to that of general solid girderless floor. The honeycombed-core girderless floor has higher bearing capacity and better plastic deformation capacity. The finite element analysis manifest that compared with solid slab floor, honeycombed- core floor’s dead load decreases on greater level while deformation increases little, and that compared with rib floor, honeycombed-core girderless floor has higher rigidity. So reinforced concrete honeycombed-core girderless floor is particularly suitable for long-span and large-bay building structure.


2012 ◽  
Vol 446-449 ◽  
pp. 695-698
Author(s):  
Jian Qiang Han ◽  
Xiu Yan Fu ◽  
Jiang Ming Tang

This thesis studies deeply the crack development characteristics, failure pattern, hysteresis curve and the displacement ductility of unbonded precast reinforced concrete frame, by analyzing one unbonded precast reinforced concrete frame under low reversed cyclic load test. We build a model using finite element analysis software to the test piece model analysis, the analysis result agree well with the experimental results. So we build finite element analysis models with different design parameters to analysis the impaction for seismic performance. Numerical analysis results can provide a scientific reference for the unbonded precast frame structure design.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012008
Author(s):  
Jinman Wang ◽  
Shaofei Li ◽  
Mingru Zhou ◽  
Lin Zhong ◽  
Yiming Chen

Abstract In order to realize the directional and controllable splitting of splitting grouting, the field grouting test was carried out. Using a new grouting pipe designed, the splitting direction and size of the branch vein are effectively controlled through the control of grouting pressure and grouting amount. In order to explore the bearing characteristics of split grouting pile and provide necessary parameters for the design of split grouting pile composite foundation in engineering practice, the field static load test and indoor geotechnical test of split grouting pile are designed, and the ultimate bearing capacity of single pile and necessary soil parameters are obtained. In order to make up for the limitations of field static load test, the three-dimensional finite element model of pile, soil and branch vein of split grouting pile is established by using the finite element analysis software ABAQUS. The finite element analysis results are compared with the measured values of field test, and the variation laws of pile shaft axial force, stress and displacement of branch vein at different depths, pile side friction, etc. are further explored, Through these changes, the interaction and load transfer mechanism between pile and soil are analyzed, which provides a reference for optimal design.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2573-2578
Author(s):  
CHANG-MIN SUH ◽  
SEONG-YOUN KIM ◽  
KYUNG-RYUL KIM

An experimental study on material characterization of SMC (Sheet Molding Compounds) compression molded parts was carried out by 3-point bending tests and creep tests. And computer simulation of optimum condition of SMC design was carried out by finite element analysis. The thicknesses of SMC specimen were 6.5, 7, 7.5 and 8mm and the angles of inclination were 0°, 2.5°, 5°, 7.5° and 10°. After static load test, the stress of SMC was different at the each condition. The influence of angles of inclination was important. The maximum stress occurred at 0°. But the more angle of inclination was big, the more maximum stress was small. The decrement was big at the range of 0° to 2.5°. The influence of thicknesses also was important. The more thickness was large, the more maximum stress was small.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daisuke Takahashi ◽  
Yoshihiro Noyama ◽  
Tsuyoshi Asano ◽  
Tomohiro Shimizu ◽  
Tohru Irie ◽  
...  

Abstract Background Internal fixation is recommended for treating Vancouver B1 periprosthetic femoral fractures. Although several fixation procedures have been developed with high fixation stability and union rates, long-term weight-bearing constructs are still lacking. Therefore, the aim of the present study was to evaluate the stability of a double-plate procedure using reversed contralateral locking compression-distal femoral plates for fixation of Vancouver B1 periprosthetic femoral fractures under full weight-bearing. Methods Single- and double-plate fixation procedures for locking compression-distal femoral plates were analysed under an axial load of 1,500 N by finite element analysis and biomechanical loading tests. A vertical loading test was performed to the prosthetic head, and the displacements and strains were calculated based on load-displacement and load-strain curves generated by the static compression tests. Results The finite element analysis revealed that double-plate fixation significantly reduced stress concentration at the lateral plate place on the fracture site. Under full weight-bearing, the maximum von Mises stress in the lateral plate was 268 MPa. On the other hand, the maximum stress in the single-plating method occurred at the defect level of the femur with a maximum stress value of 1,303 MPa. The principal strains of single- and double-plate fixation were 0.63 % and 0.058 %, respectively. Consistently, in the axial loading test, the strain values at a 1,500 N loading of the single- and double-plate fixation methods were 1,274.60 ± 11.53 and 317.33 ± 8.03 (× 10− 6), respectively. Conclusions The present study suggests that dual-plate fixation with reversed locking compression-distal femoral plates may be an excellent treatment procedure for patients with Vancouver B1 fractures, allowing for full weight-bearing in the early postoperative period.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


Sign in / Sign up

Export Citation Format

Share Document