Predicting optimal process conditions for flip-chip assembly using copper column bumped dies

Author(s):  
H. Lu ◽  
C. Bailey
2012 ◽  
Vol 524-527 ◽  
pp. 1078-1081
Author(s):  
Jian Guo Song ◽  
Xin Zhi Wang ◽  
Shao Dan Xiao ◽  
Wei Liu

This article aims to study the technology of extracting potassium from potassium feldspar with molten salt leaching method and to analyze the effects of temperature, reaction time and other factors on extracting potassium, concluding the optimal process conditions of extracting potassium with molten leaching method from potash feldspar.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 946
Author(s):  
Chunlian Wang ◽  
Xiaojie Sun ◽  
Huijun Shan ◽  
Hongxia Zhang ◽  
Beidou Xi

This study explored the performance of TiO2 nanoparticles in combination with aged waste reactors to treat landfill leachate. The optimum conditions for synthesis of TiO2 were determined by a series of characterizations and removal rates of methyl orange. The effect of the ultraviolet irradiation time, amount of the catalyst, and pH on the removal efficiency for the chemical oxygen demand (COD) and color in the leachate was explored to determine the optimal process conditions, which were 500 min, 4 g/L and 8.88, respectively. The removal rates for COD and chroma under three optimal conditions were obtained by the single factor control method: 89% and 70%; 95.56% and 70%; and 85% and 87.5%, respectively. Under optimal process conditions, the overall average removal rates for ammonium nitrogen (NH4+–N) and COD in the leachate for the combination of TiO2 nanoparticles and an aged waste reactor were 98.8% and 32.5%, respectively, and the nitrate (NO3−–N) and nitrite nitrogen (NO2–N) concentrations were maintained at 7–9 and 0.01–0.017 mg/L, respectively. TiO2 nanoparticles before and after the photocatalytic reaction were characterized by emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectrometry. In addition, TiO2 nanoparticles have excellent recyclability, showing the potential of the photocatalytic/biological combined treatment of landfill leachate. This simulation of photocatalysis-landfilling could be a baseline study for the implementation of technology at the pilot scale.


Author(s):  
Shengmin Wen ◽  
KyungRok Park ◽  
Patrick Thompson ◽  
Dwayne Shirley ◽  
JeongSeok Lee ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document