Study on Extracting Potassium from Potassium Feldspar with Molten Salt Leaching Method

2012 ◽  
Vol 524-527 ◽  
pp. 1078-1081
Author(s):  
Jian Guo Song ◽  
Xin Zhi Wang ◽  
Shao Dan Xiao ◽  
Wei Liu

This article aims to study the technology of extracting potassium from potassium feldspar with molten salt leaching method and to analyze the effects of temperature, reaction time and other factors on extracting potassium, concluding the optimal process conditions of extracting potassium with molten leaching method from potash feldspar.

2016 ◽  
Vol 35 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Guo Zhanyong ◽  
Ju Shaohua ◽  
Peng Jinhui ◽  
Zhang Libo ◽  
Lei Ting

AbstractThe clean utilization of the residue containing chloride, such as zinc oxide dust and CuCl residue, produced from zinc hydrometallurgy is very important for the recycle of valuable metals. In this paper, a new technology for dechlorination of the CuCl residue through thermal treatment with application of microwave and oxygen-enriched air roasting is brought out. And the response surface methodology (RSM) based on five-level, three-variable and central composite design (CCD) was used to optimize the operation parameters for increasing the dechlorination efficiency. The effects of temperature, roasting time and oxygen consumption on the dechlorination efficiency were studied and the optimal process conditions were identified. In addition, X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy were used to characterize the dechlorination process under the optimum condition. The results showed that the experimental data were fitted to a second-order polynomial equation. The optimized process conditions are identified to be a roasting temperature of 451℃, heating duration of 114 min and oxygen consumption of 2.4 times the theoretical oxygen demand. A dechlorination efficiency of 96.4% could be achieved at the optimal process conditions.


2014 ◽  
Vol 960-961 ◽  
pp. 199-203
Author(s):  
Dan Wu ◽  
Bi Jun Luo ◽  
Wei Liu ◽  
Li Cong Wang ◽  
Ying Yao ◽  
...  

It is a kind of high efficiency and energy saving new method to prepare high purity magnesium oxide (MgO) with magnesium carbonate tri-hydrate (MgCO3·3H2O) as intermediate. Our research group had already designed orthogonal experimental and got the optimal process conditions of MgCO3·3H2O. The operating parameters such as temperature, pH and reaction time had been further optimized in this paper. Intermediate MgCO3·3H2O with high aspect ratio and good settling performance was synthesized at the optimal temperature 40-50°C,the optimal pH 8.8-9.0, the optimal reaction time70min, the optimal condition also applied to brine system.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 119 ◽  
Author(s):  
Yun Li ◽  
Shenghai Yang ◽  
Wenrong Lin ◽  
Pekka Taskinen ◽  
Jing He ◽  
...  

A novel and cleaner process for lead and silver recycling from multiple lead-containing wastes, e.g., lead ash, lead sludge, lead slag, and ferric sludge, by reductive sulfur-fixing smelting was proposed. In this process, coke and iron-containing wastes were employed as reductive agent and sulfur-fixing agent, respectively. A Na2CO3-Na2SO4 mixture was added as flux. The feasibility of this process was detected from thermodynamic and experimental perspectives. The influence of Fe/SiO2 and CaO/SiO2, composition of the molten salt, coke addition, smelting temperature, and smelting time on direct Pb recovery and sulfur-fixation efficiency were investigated. The optimal process conditions were determined as follows: WCoke = 15% WPb wastes, W Na 2 CO 3 / W Na 2 SO 4 = 0.7/0.3, Fe/SiO2 = 1.10, CaO/SiO2 = 0.30, smelting temperature 1200 °C, and smelting time 2 h, where W represents weight. Under these optimum conditions, 92.4% Pb and 98.8% Ag were directly recovered in crude lead bullion in one step treatment, and total 98.6% sulfur was fixed. The generation and emissions of SO2 can be avoided. The main phases in ferrous matte obtained were FeS, NaFeS2, Fe2Zn3S5, and a little entrained Pb. The slag was a FeO-SiO2-CaO-Na2O quaternary melt.


2012 ◽  
Vol 27 (4) ◽  
pp. 707-713 ◽  
Author(s):  
Jukka Pekka lsoaho ◽  
Suvi Tarkkanen ◽  
Raimo Alen ◽  
Juha Fiskari

Abstract Softwood-based kraft mill bleaching effluents from the initial bleaching stages D0 and E1 (the bleaching sequence being D0E 1D 1 E2D2) were treated by the oxidative Fenton method (H20rFeS04) to decompose organic pollutants contammg adsorbable organic halogens (AOX). Experiments designed using the Taguchi method were applied to predict the process conditions that would result in a cost-effective and adequate removal of AOX. In addition to the composition and concentration of the reagents (H202 and Fe2+), the main process parameters selected were temperature and reaction time, while pH was adj usted to an approximate value of 4 (the volumetric ratio of the mixed effluents D0:E 1 was 3 :2). The results indicated that an AOX removal of about 70% for this mixture ( corresponding to about 50% for the mill) was achieved when the eftluent samples were treated for 60 min at 70°C with H202 and Fe2+ at a concentration of 1 600 mg/1 and 28 mg/1, respectively.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 946
Author(s):  
Chunlian Wang ◽  
Xiaojie Sun ◽  
Huijun Shan ◽  
Hongxia Zhang ◽  
Beidou Xi

This study explored the performance of TiO2 nanoparticles in combination with aged waste reactors to treat landfill leachate. The optimum conditions for synthesis of TiO2 were determined by a series of characterizations and removal rates of methyl orange. The effect of the ultraviolet irradiation time, amount of the catalyst, and pH on the removal efficiency for the chemical oxygen demand (COD) and color in the leachate was explored to determine the optimal process conditions, which were 500 min, 4 g/L and 8.88, respectively. The removal rates for COD and chroma under three optimal conditions were obtained by the single factor control method: 89% and 70%; 95.56% and 70%; and 85% and 87.5%, respectively. Under optimal process conditions, the overall average removal rates for ammonium nitrogen (NH4+–N) and COD in the leachate for the combination of TiO2 nanoparticles and an aged waste reactor were 98.8% and 32.5%, respectively, and the nitrate (NO3−–N) and nitrite nitrogen (NO2–N) concentrations were maintained at 7–9 and 0.01–0.017 mg/L, respectively. TiO2 nanoparticles before and after the photocatalytic reaction were characterized by emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectrometry. In addition, TiO2 nanoparticles have excellent recyclability, showing the potential of the photocatalytic/biological combined treatment of landfill leachate. This simulation of photocatalysis-landfilling could be a baseline study for the implementation of technology at the pilot scale.


2014 ◽  
Vol 900 ◽  
pp. 361-364
Author(s):  
Xiao Hui Wang ◽  
Xi Hua Du ◽  
Li Min Dong

Esters of Citric acid and palmityl alcohol were synthesized by esterification reaction under catalysis of cation exchange resin and P-toluene sulfonic acid respectively. The effects of amount of catalyst, ratio of raw materials, reaction time and temperature on the synthesis reaction were investigated . The experimental results showed that optimum of process conditions were 1:1~1:1.5 molar ratio of citric acid and palmityl alcohol, reaction temperature of 130~140°C, reaction time of 2 h. Conversion of palmityl alcohol were all more than 90% under 0.3% dosage using p-toluene sulfonic acid as the catalyst, or 0.5% dosage using 721 cation exchange resin with sulfonic acid type as catalyst. The synthesized product had good surface activity.


2016 ◽  
Vol 37 (4) ◽  
pp. 485-501 ◽  
Author(s):  
Józef Nastaj ◽  
Małgorzata Tuligłowicz ◽  
Konrad Witkiewicz

Abstract The objective of the work are in-depth experimental studies of Cu(II) and Zn(II) ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II) and Zn(II) ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II) and Zn(II) ions (1:1, 1:2, 2:1). Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.


Sign in / Sign up

Export Citation Format

Share Document