Growth kinetics of intermetallic compound in solder joints during thermal cycling: a review

Author(s):  
Junmeng Xu ◽  
Ying Guo ◽  
Yutai Su ◽  
Ruitao Tang ◽  
Xu Long
2004 ◽  
Vol 5 (1-2) ◽  
pp. 19-28 ◽  
Author(s):  
Y. Koizumi ◽  
H. Katsumura ◽  
Y. Minamino ◽  
N. Tsuji ◽  
J.G. Lee ◽  
...  

2020 ◽  
Vol 307 ◽  
pp. 26-30
Author(s):  
Azman Jalar ◽  
Maria Abu Bakar ◽  
Mohd. Zulhakimi Ab. Razak ◽  
Norliza Ismail

Evaluating the growth kinetics is one of the most important characteristic in assessing the quality and reliability of metallurgical joining, especially in electronics packaging such as soldering and wire bonding technology. The growth kinetics is normally assessed using Arrhenius equation that involves diffusion activities due to thermally activated process. The well-known factors of thermal and time together with generally accepted growth exponent have been widely used for this assessment. The intermetallic compound layer which is the by-product of metallurgical reaction during soldering process has been exposed to high temperature to accelerate its growth. The cross-section of the joining was observed using optical microscope to quantify the layer of intermetallic compound. Morphological effect and shape factor of the layer have been analysed in complement with the effect of temperature and time on the growth behaviour. Directional growth and irregularities shape of the intermetallic layer show some inconsistency on the selection of growth exponent. The effect of initial size of intermetallic layer must also be considered in this assessment. This study suggests that the morphological effect must be analysed prior to the selection the growth exponent in assessing growth behaviour and kinetics of intermetallic layer in metallurgical joining.


2015 ◽  
Vol 64 (16) ◽  
pp. 166601
Author(s):  
Zhao Ning ◽  
Zhong Yi ◽  
Huang Ming-Liang ◽  
Ma Hai-Tao ◽  
Liu Xiao-Ping

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xu Han ◽  
Xiaoyan Li ◽  
Peng Yao

Purpose This study aims to investigate the effect of ultrasound on interfacial microstructures and growth kinetics of intermetallic compounds (IMCs) at different temperatures. Design/methodology/approach To investigate the effect of ultrasound on IMCs growth quantitatively, the cross-sectional area of IMCs layers over a confirmed length was obtained for calculating the thickness of the IMCs layer. Findings The generation of dimensional difference in normal direction between Cu6Sn5 and its adjacent Cu6Sn5, formation of bossed Cu6Sn5 and non-interfacial Cu6Sn5 in ultrasonic solder joints made the interfacial Cu6Sn5 layer present a non-scallop-like morphology different from that of traditional solder joints. At 260°C and 290°C, the Cu3Sn layer presented a wave-like shape. In contrast, at 320°C, the Cu3Sn in ultrasonic solder joints consisted of non-interfacial Cu3Sn and interfacial Cu3Sn with a branch-like shape. The Cu6Sn5/Cu3Sn boundary and Cu3Sn/Cu interface presented a sawtooth-like shape under the effect of ultrasound. The predominant mechanism of ultrasonic-assisted growth of Cu6Sn5 growth at 260°C, 290°C and 320°C involved the grain boundary diffusion accompanied by grain coarsening. The Cu3Sn growth was controlled by volume diffusion during the ultrasonic soldering process at 260°C and 290°C. The diffusion mechanism of Cu3Sn growth transformed to grain boundary diffusion accompanied by grain coarsening when the ultrasonic soldering temperature was increased to 320°C. Originality/value The microstructural evolution and growth kinetics of IMCs in ultrasonically prepared ultrasonic solder joints at different temperatures have rarely been reported in previous studies. In this study, the effect of ultrasound on microstructural evolution and growth kinetics of IMCs was systematically investigated.


Sign in / Sign up

Export Citation Format

Share Document