Finite element modeling of solder joint fatigue in four-point bending test

Author(s):  
Baris Sabuncuoglu ◽  
Filip Vanhee ◽  
Geert Willems ◽  
Bart Vandevelde ◽  
Dirk Vandepitte ◽  
...  
Author(s):  
Mohammad Masum Hossain ◽  
Dereje Agonafer ◽  
Puligandla Viswanadham ◽  
Tommi Reinikainen

The life-prediction modeling of an electronic package requires a sequence of critical assumptions concerning the finite element models. The solder structures accommodate the bulk of the plastic strain that is generated during accelerated temperature cycling due to the thermal expansion mismatch between the various materials that constitute the package. Finite element analysis is extensively used for simulating the effect of accelerated temperature cycling on electronic packages. There are a number of issues that need to be addressed to improve the current FEM models. One of the limitations inherent to the presently available models is the accuracy in property values of eutectic 63Sn/37Pb solder or other solder materials (i.e. 62Sn/36Pb/2Ag). Life prediction methodologies for high temperature solders (90Pb/10Sn, 95Pb/5Sn, etc.) or lead-free based inter-connects materials, are almost non-existent due to their low volume use or relative infancy. [1] Another major limitation for the models presently available is excluding the effect of intermetallic compound (Cu6Sn5, Cu3Sn) formation and growth between solder joint and Cu pad due to the reflow processes, rework and during the thermal aging. The mechanical reliability of these intermetallic compounds clearly influences the mechanical integrity of the interconnection. The brittle failures of solder balls have been identified with the growth of a number of intermetallic compounds both at the interfaces between metallic layers and in the bulk solder balls. In this paper, the effect of intermetallic compound in fatigue life prediction using finite element modeling is described. A Chip Scale Package 3D Quarter model is chosen to do the FE analysis. Accelerated temperature cycling is performed to obtain the plastic work due to thermal expansion mismatch between the various materials. Solder joint fatigue life prediction methodologies were incorporated so that finite element simulation results were translated into estimated cycles to failure. The results are compared with conventional models that do not include intermetallic effects. Conventionally available material properties are assumed for the eutectic 63Sn/37Pb solder and the intermetallic material properties. The importance of including intermetallic effect in finite element modeling will be discussed.


2016 ◽  
Vol 57 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Xiaolong Dong ◽  
Hongwei Zhao ◽  
Lin Zhang ◽  
Hongbing Cheng ◽  
Jing Gao

Author(s):  
Ali A. Dawood ◽  
S. Kenny

Finite element modelling procedures to simulate the pipeline mechanical response during reel lay installation are calibrated from the available literature. A three-dimensional continuum model was developed to simulate the bending and straightening processes during reel lay installation and was compared with physical tests conducted within a bending rig and four-point bending test frame. A range of pipeline diameters, wall thicknesses, material grades and weld offsets are examined.


Holzforschung ◽  
2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Hiroshi Yoshihara

Abstract The asymmetric four-point bending test for obtaining shear properties of wood was examined. Rectangular bars with various notches on top and bottom surfaces of western hemlock (Tsuga heterophylla Sarg.) were prepared as a specimen. The shear modulus, proportional limit stress, and shear strength were measured. The influence of notch configuration on the shear properties was examined independently by finite element calculations. The influence of notch configuration was not significant in experiments, while it was found relevant in finite element analyses. Although the pure shear stress condition could not be realized after the initiation of failure, the measurement of shear properties of solid wood simply by the asymmetric four-point bending test was feasible.


Sign in / Sign up

Export Citation Format

Share Document